Fractional Gaussian fields: A survey

We discuss a family of random fields indexed by a parameter s ∈ R which we call the fractional Gaussian fields, given by FGFs(R) = (−∆)−s/2W, where W is a white noise on Rd and (−∆)−s/2 is the fractional Laplacian. These fields can also be parameterized by their Hurst parameter H = s − d/2. In one dimension, examples of FGFs processes include Brownian motion (s = 1) and fractional Brownian motion (1/2 < s < 3/2). Examples in arbitrary dimension include white noise (s = 0), the Gaussian free field (s = 1), the bi-Laplacian Gaussian field (s = 2), the log-correlated Gaussian field (s = d/2), Levy’s Brownian motion (s = d/2 + 1/2), and multidimensional fractional Brownian motion (d/2 < s < d/2 + 1). These fields have applications to statistical physics, early-universe cosmology, finance, quantum field theory, image processing, and other disciplines. We present an overview of fractional Gaussian fields including covariance formulas, Gibbs properties, spherical coordinate decompositions, restrictions to linear subspaces, local set theorems, and other basic results. We also define a discrete fractional Gaussian field and explain how the FGFs with s ∈ (0, 1) can be understood as a long range Gaussian free field in which the potential theory of Brownian motion is replaced by that of an isotropic 2s-stable Levy process. ∗Partially supported by NSF grant DMS 1209044. †Supported by NSF GRFP award number 1122374. ar X iv :1 40 7. 55 98 v1 [ m at h. PR ] 2 1 Ju l 2 01 4

[1]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[2]  H. Busemann Advances in mathematics , 1961 .

[3]  Luis Silvestre,et al.  Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian , 2007, math/0702392.

[4]  Takuya Kon-no,et al.  Transactions of the American Mathematical Society , 1996 .

[5]  Jacques Istas,et al.  Fractional Fields and Applications , 2013 .

[6]  O. Schramm,et al.  A contour line of the continuum Gaussian free field , 2010, 1008.2447.

[7]  Kellen Petersen August Real Analysis , 2009 .

[8]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[9]  Julien Dubédat SLE and the free field: partition functions and couplings , 2007, 0712.3018.

[10]  Harold J. Kushner,et al.  Stochastic processes in information and dynamical systems , 1972 .

[11]  Xin Sun,et al.  Uniform Spanning Forests and the bi-Laplacian Gaussian field , 2013, 1312.0059.

[12]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[13]  R. Bass Diffusions and Elliptic Operators , 1997 .

[14]  J. P. McKean Brownian Motion with a Several-Dimensional Time , 1963 .

[15]  Hironobu Sakagawa On the Free Energy of a Gaussian Membrane Model with External Potentials , 2012 .

[16]  S. Sheffield,et al.  Imaginary geometry III: reversibility of SLE_\kappa\ for \kappa \in (4,8) , 2012, 1201.1498.

[17]  Vincent Vargas,et al.  Gaussian multiplicative chaos and applications: A review , 2013, 1305.6221.

[18]  I. Campbell,et al.  Volume 30 , 2002 .

[19]  S. Janson Gaussian Hilbert Spaces , 1997 .

[20]  R. Adler The Geometry of Random Fields , 2009 .

[21]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[22]  R. Bhattacharya,et al.  THE HURST EFFECT UNDER TRENDS , 1983 .

[23]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[24]  S. Sheffield,et al.  Imaginary geometry II: reversibility of SLE_\kappa(\rho_1;\rho_2) for \kappa \in (0,4) , 2012, 1201.1497.

[25]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[26]  N. Kurt Maximum and entropic repulsion for a Gaussian membrane model in the critical dimension , 2008, 0801.0551.

[27]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[28]  B. Rider,et al.  The Noise in the Circular Law and the Gaussian Free Field , 2006, math/0606663.

[29]  R. M. Blumenthal,et al.  On the distribution of first hits for the symmetric stable processes. , 1961 .

[30]  Hironobu Sakagawa Entropic repulsion for a Gaussian lattice field with certain finite range interaction , 2003 .

[31]  S. Sheffield Gaussian free fields for mathematicians , 2003, math/0312099.

[32]  P. McCullagh What is a statistical model , 2002 .

[33]  B. Mandelbrot On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars , 1975, Journal of Fluid Mechanics.

[34]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[35]  A. Yaglom Some Classes of Random Fields in n-Dimensional Space, Related to Stationary Random Processes , 1957 .

[36]  Scott Sheffield,et al.  Liouville quantum gravity and KPZ , 2008, 0808.1560.

[37]  Gerhard Kristensson,et al.  Second Order Differential Equations: Special Functions and Their Classification , 2010 .

[38]  S. Molchanov,et al.  Symmetric Stable Processes as Traces of Degenerate Diffusion Processes , 1969 .

[39]  R. Kenyon,et al.  Dominos and the Gaussian Free Field , 2000, math-ph/0002027.

[40]  M. Lévy Le Mouvement Brownien Plan , 1940 .

[41]  M. Birkner,et al.  Blow-up of semilinear PDE's at the critical dimension. A probabilistic approach , 2002 .

[42]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[43]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[44]  A. Skorokhod Limit Theorems for Stochastic Processes , 1956 .

[45]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[46]  R. Wilson Modern Cosmology , 2004 .

[47]  Dock Bumpers,et al.  Volume 2 , 2005, Proceedings of the Ninth International Conference on Computer Supported Cooperative Work in Design, 2005..

[48]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[49]  D. R. Cox Journal of Applied Probability , 1964, Canadian Mathematical Bulletin.

[50]  R. Estrada,et al.  Introduction to the Theory of Distributions , 1994 .

[51]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[52]  Filippo Gazzola,et al.  Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains , 2010 .

[53]  S. Chang,et al.  Fractional Laplacian in conformal geometry , 2010, 1003.0398.

[54]  Jstor,et al.  Proceedings of the American Mathematical Society , 1950 .

[55]  H. Triebel Theory Of Function Spaces , 1983 .

[56]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[57]  Hui-Hsiung Kuo,et al.  White noise distribution theory , 1996 .

[58]  Yimin Xiao Recent Developments on Fractal Properties of Gaussian Random Fields , 2013 .

[59]  D. Mondal Applying Dynkin's isomorphism: An alternative approach to understand the Markov property of the de Wijs process , 2015, 1507.07357.

[60]  Certain positive-definite kernels , 1989 .

[61]  Ian Melbourne,et al.  Weak Convergence to Stable Lévy Processes for Nonuniformly Hyperbolic Dynamical Systems , 2013, 1309.6429.

[62]  Charles M. Newman Self-similar random feilds in mathematical physics , 1981 .

[63]  P. McCullagh,et al.  Evidence for conformal invariance of crop yields , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[64]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[65]  Anatoli V. Skorokhod,et al.  Limit Theorems for Stochastic Processes with Independent Increments , 1957 .

[66]  G. Parisi Brownian motion , 2005, Nature.

[67]  E. B. Dynkin,et al.  Markov processes and random fields , 1980 .

[68]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[69]  Louis Dupaigne,et al.  Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations , 2010, 1004.1906.

[70]  N. U. Prabhu,et al.  Stochastic Processes and Their Applications , 1999 .

[71]  American Journal of Mathematics , 1886, Nature.

[72]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[73]  Entropic repulsion for a class of Gaussian interface models in high dimensions , 2005, math/0510143.

[74]  H. E. Kuhn,et al.  BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, , 2007 .

[75]  Luis Silvestre,et al.  Regularity of the obstacle problem for a fractional power of the laplace operator , 2007 .

[76]  B. Simon Functional integration and quantum physics , 1979 .

[77]  M. L. Kent,et al.  Volume 73 , 2005, Environmental Biology of Fishes.

[78]  R. Dobrushin Gaussian and their Subordinated Self-similar Random Generalized Fields , 1979 .

[79]  S. Sheffield,et al.  Imaginary geometry I: interacting SLEs , 2012, 1201.1496.

[80]  Xavier Cabre,et al.  Positive solutions of nonlinear problems involving the square root of the Laplacian , 2009, 0905.1257.

[81]  S. Sheffield,et al.  Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees , 2013, 1302.4738.

[82]  David Mumford,et al.  Communications on Pure and Applied Mathematics , 1989 .

[83]  R. Gangolli,et al.  Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's brownian motion of several parameters , 1967 .

[84]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[85]  E. Stein,et al.  Introduction to Fourier analysis on Euclidean spaces (PMS-32) , 1972 .

[86]  E. Harrell Communications in Partial Differential Equations , 2007 .

[87]  S. Sheffield,et al.  Imaginary geometry II: Reversibility of SLEκ(ρ1;ρ2) for κ∈(0,4). , 2016 .

[88]  S. Sheffield,et al.  Imaginary geometry III: reversibility of SLE_κ for κ\in (4,8) , 2016 .

[89]  S. Sheffield Conformal weldings of random surfaces: SLE and the quantum gravity zipper , 2010, 1012.4797.

[90]  Renming Song,et al.  Estimates on Green functions and Poisson kernels for symmetric stable processes , 1998 .