Fractional Gaussian fields: A survey
暂无分享,去创建一个
[1] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[2] H. Busemann. Advances in mathematics , 1961 .
[3] Luis Silvestre,et al. Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian , 2007, math/0702392.
[4] Takuya Kon-no,et al. Transactions of the American Mathematical Society , 1996 .
[5] Jacques Istas,et al. Fractional Fields and Applications , 2013 .
[6] O. Schramm,et al. A contour line of the continuum Gaussian free field , 2010, 1008.2447.
[7] Kellen Petersen August. Real Analysis , 2009 .
[8] E. Valdinoci,et al. Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.
[9] Julien Dubédat. SLE and the free field: partition functions and couplings , 2007, 0712.3018.
[10] Harold J. Kushner,et al. Stochastic processes in information and dynamical systems , 1972 .
[11] Xin Sun,et al. Uniform Spanning Forests and the bi-Laplacian Gaussian field , 2013, 1312.0059.
[12] J. Chilès,et al. Geostatistics: Modeling Spatial Uncertainty , 1999 .
[13] R. Bass. Diffusions and Elliptic Operators , 1997 .
[14] J. P. McKean. Brownian Motion with a Several-Dimensional Time , 1963 .
[15] Hironobu Sakagawa. On the Free Energy of a Gaussian Membrane Model with External Potentials , 2012 .
[16] S. Sheffield,et al. Imaginary geometry III: reversibility of SLE_\kappa\ for \kappa \in (4,8) , 2012, 1201.1498.
[17] Vincent Vargas,et al. Gaussian multiplicative chaos and applications: A review , 2013, 1305.6221.
[18] I. Campbell,et al. Volume 30 , 2002 .
[19] S. Janson. Gaussian Hilbert Spaces , 1997 .
[20] R. Adler. The Geometry of Random Fields , 2009 .
[21] R. M. Dudley,et al. Real Analysis and Probability , 1989 .
[22] R. Bhattacharya,et al. THE HURST EFFECT UNDER TRENDS , 1983 .
[23] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[24] S. Sheffield,et al. Imaginary geometry II: reversibility of SLE_\kappa(\rho_1;\rho_2) for \kappa \in (0,4) , 2012, 1201.1497.
[25] P. Billingsley,et al. Convergence of Probability Measures , 1970, The Mathematical Gazette.
[26] N. Kurt. Maximum and entropic repulsion for a Gaussian membrane model in the critical dimension , 2008, 0801.0551.
[27] B. Mandelbrot,et al. Fractional Brownian Motions, Fractional Noises and Applications , 1968 .
[28] B. Rider,et al. The Noise in the Circular Law and the Gaussian Free Field , 2006, math/0606663.
[29] R. M. Blumenthal,et al. On the distribution of first hits for the symmetric stable processes. , 1961 .
[30] Hironobu Sakagawa. Entropic repulsion for a Gaussian lattice field with certain finite range interaction , 2003 .
[31] S. Sheffield. Gaussian free fields for mathematicians , 2003, math/0312099.
[32] P. McCullagh. What is a statistical model , 2002 .
[33] B. Mandelbrot. On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars , 1975, Journal of Fluid Mechanics.
[34] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[35] A. Yaglom. Some Classes of Random Fields in n-Dimensional Space, Related to Stationary Random Processes , 1957 .
[36] Scott Sheffield,et al. Liouville quantum gravity and KPZ , 2008, 0808.1560.
[37] Gerhard Kristensson,et al. Second Order Differential Equations: Special Functions and Their Classification , 2010 .
[38] S. Molchanov,et al. Symmetric Stable Processes as Traces of Degenerate Diffusion Processes , 1969 .
[39] R. Kenyon,et al. Dominos and the Gaussian Free Field , 2000, math-ph/0002027.
[40] M. Lévy. Le Mouvement Brownien Plan , 1940 .
[41] M. Birkner,et al. Blow-up of semilinear PDE's at the critical dimension. A probabilistic approach , 2002 .
[42] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[43] N. S. Landkof. Foundations of Modern Potential Theory , 1972 .
[44] A. Skorokhod. Limit Theorems for Stochastic Processes , 1956 .
[45] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[46] R. Wilson. Modern Cosmology , 2004 .
[47] Dock Bumpers,et al. Volume 2 , 2005, Proceedings of the Ninth International Conference on Computer Supported Cooperative Work in Design, 2005..
[48] R. Adler,et al. Random Fields and Geometry , 2007 .
[49] D. R. Cox. Journal of Applied Probability , 1964, Canadian Mathematical Bulletin.
[50] R. Estrada,et al. Introduction to the Theory of Distributions , 1994 .
[51] Jean-Pierre Bourguignon,et al. Mathematische Annalen , 1893 .
[52] Filippo Gazzola,et al. Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains , 2010 .
[53] S. Chang,et al. Fractional Laplacian in conformal geometry , 2010, 1003.0398.
[54] Jstor,et al. Proceedings of the American Mathematical Society , 1950 .
[55] H. Triebel. Theory Of Function Spaces , 1983 .
[56] L. Caffarelli,et al. An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.
[57] Hui-Hsiung Kuo,et al. White noise distribution theory , 1996 .
[58] Yimin Xiao. Recent Developments on Fractal Properties of Gaussian Random Fields , 2013 .
[59] D. Mondal. Applying Dynkin's isomorphism: An alternative approach to understand the Markov property of the de Wijs process , 2015, 1507.07357.
[60] Certain positive-definite kernels , 1989 .
[61] Ian Melbourne,et al. Weak Convergence to Stable Lévy Processes for Nonuniformly Hyperbolic Dynamical Systems , 2013, 1309.6429.
[62] Charles M. Newman. Self-similar random feilds in mathematical physics , 1981 .
[63] P. McCullagh,et al. Evidence for conformal invariance of crop yields , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[64] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[65] Anatoli V. Skorokhod,et al. Limit Theorems for Stochastic Processes with Independent Increments , 1957 .
[66] G. Parisi. Brownian motion , 2005, Nature.
[67] E. B. Dynkin,et al. Markov processes and random fields , 1980 .
[68] E. Stein. Singular Integrals and Di?erentiability Properties of Functions , 1971 .
[69] Louis Dupaigne,et al. Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations , 2010, 1004.1906.
[70] N. U. Prabhu,et al. Stochastic Processes and Their Applications , 1999 .
[71] American Journal of Mathematics , 1886, Nature.
[72] Gerald B. Folland,et al. Real Analysis: Modern Techniques and Their Applications , 1984 .
[73] Entropic repulsion for a class of Gaussian interface models in high dimensions , 2005, math/0510143.
[74] H. E. Kuhn,et al. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, , 2007 .
[75] Luis Silvestre,et al. Regularity of the obstacle problem for a fractional power of the laplace operator , 2007 .
[76] B. Simon. Functional integration and quantum physics , 1979 .
[77] M. L. Kent,et al. Volume 73 , 2005, Environmental Biology of Fishes.
[78] R. Dobrushin. Gaussian and their Subordinated Self-similar Random Generalized Fields , 1979 .
[79] S. Sheffield,et al. Imaginary geometry I: interacting SLEs , 2012, 1201.1496.
[80] Xavier Cabre,et al. Positive solutions of nonlinear problems involving the square root of the Laplacian , 2009, 0905.1257.
[81] S. Sheffield,et al. Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees , 2013, 1302.4738.
[82] David Mumford,et al. Communications on Pure and Applied Mathematics , 1989 .
[83] R. Gangolli,et al. Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's brownian motion of several parameters , 1967 .
[84] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[85] E. Stein,et al. Introduction to Fourier analysis on Euclidean spaces (PMS-32) , 1972 .
[86] E. Harrell. Communications in Partial Differential Equations , 2007 .
[87] S. Sheffield,et al. Imaginary geometry II: Reversibility of SLEκ(ρ1;ρ2) for κ∈(0,4). , 2016 .
[88] S. Sheffield,et al. Imaginary geometry III: reversibility of SLE_κ for κ\in (4,8) , 2016 .
[89] S. Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper , 2010, 1012.4797.
[90] Renming Song,et al. Estimates on Green functions and Poisson kernels for symmetric stable processes , 1998 .