First principles micro-kinetic model of catalytic non-oxidative dehydrogenation of ethane over close-packed metallic facets

[1]  J. Rumble CRC Handbook of Chemistry and Physics , 2019 .

[2]  Andrew J. Medford,et al.  Extracting Knowledge from Data through Catalysis Informatics , 2018, ACS Catalysis.

[3]  M. Mavrikakis,et al.  Ethylene versus ethane: A DFT-based selectivity descriptor for efficient catalyst screening , 2018, Journal of Catalysis.

[4]  Andrew J. Medford,et al.  Selectivity of Synthesis Gas Conversion to C2+ Oxygenates on fcc(111) Transition-Metal Surfaces , 2018 .

[5]  T. Bligaard,et al.  A Lattice Kinetic Monte Carlo Solver for First-Principles Microkinetic Trend Studies. , 2018, Journal of chemical theory and computation.

[6]  Evan C. Wegener,et al.  Structure and reactivity of Pt–In intermetallic alloy nanoparticles: Highly selective catalysts for ethane dehydrogenation , 2018 .

[7]  Kristopher L. Kuhlman,et al.  mpmath: a Python library for arbitrary-precision floating-point arithmetic , 2017 .

[8]  Fuat E. Celik,et al.  Predicting Selectivity for Ethane Dehydrogenation and Coke Formation Pathways over Model Pt–M Surface Alloys with ab Initio and Scaling Methods , 2017 .

[9]  Michael Walter,et al.  The atomic simulation environment-a Python library for working with atoms. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  Evan C. Wegener,et al.  Zinc Promotion of Platinum for Catalytic Light Alkane Dehydrogenation: Insights into Geometric and Electronic Effects , 2017 .

[11]  R. West,et al.  Automatic Generation of Microkinetic Mechanisms for Heterogeneous Catalysis , 2017 .

[12]  Hui Wang,et al.  Mechanistic Insights into Ethylene Transformations on Ir(111) by Density Functional Calculations and Microkinetic Modeling. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  Zachary W. Ulissi,et al.  To address surface reaction network complexity using scaling relations machine learning and DFT calculations , 2017, Nature Communications.

[14]  Fuat E. Celik,et al.  Effect of Tin Coverage on Selectivity for Ethane Dehydrogenation over Platinum-Tin Alloys , 2016 .

[15]  Evan C. Wegener,et al.  Pd–In intermetallic alloy nanoparticles: highly selective ethane dehydrogenation catalysts , 2016 .

[16]  S. M. Sadrameli Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: A state-of-the-art review II: Catalytic cracking review , 2016 .

[17]  Wei Chen,et al.  FireWorks: a dynamic workflow system designed for high‐throughput applications , 2015, Concurr. Comput. Pract. Exp..

[18]  M. Head‐Gordon,et al.  Ethane and propane dehydrogenation over PtIr/Mg(Al)O , 2015 .

[19]  Xinggui Zhou,et al.  Density Functional Theory-Assisted Microkinetic Analysis of Methane Dry Reforming on Ni Catalyst , 2015 .

[20]  Robert Schlögl,et al.  The Mechanism of CO and CO2 Hydrogenation to Methanol over Cu‐Based Catalysts , 2015 .

[21]  Thomas Bligaard,et al.  CatMAP: A Software Package for Descriptor-Based Microkinetic Mapping of Catalytic Trends , 2015, Catalysis Letters.

[22]  Xinggui Zhou,et al.  Tuning selectivity and stability in propane dehydrogenation by shaping Pt particles: A combined experimental and DFT study , 2014 .

[23]  W. Kessels,et al.  First-Principles Investigation of C-H Bond Scission and Formation Reactions in Ethane, Ethene, and Ethyne Adsorbed on Ru(0001). , 2014 .

[24]  매튜 티 프리츠,et al.  Catalytic dehydrogenation process , 2014 .

[25]  Matthew M. Montemore,et al.  Scaling relations between adsorption energies for computational screening and design of catalysts , 2014 .

[26]  B. Weckhuysen,et al.  Catalytic dehydrogenation of light alkanes on metals and metal oxides. , 2014, Chemical reviews.

[27]  A. Bell,et al.  Effects of composition and metal particle size on ethane dehydrogenation over PtxSn100−x/Mg(Al)O (70 ⩽ x ⩽ 100) , 2014 .

[28]  Qiang Wang,et al.  Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States , 2014 .

[29]  D. Vanderbilt,et al.  Pseudopotentials for high-throughput DFT calculations , 2013, 1305.5973.

[30]  P. Sautet,et al.  From γ-alumina to supported platinum nanoclusters in reforming conditions: 10 years of DFT modeling and beyond , 2013 .

[31]  K. Honkala,et al.  Selectivity in propene dehydrogenation on Pt and Pt3Sn surfaces from first principles , 2013 .

[32]  Matthew M. Montemore,et al.  Site-Specific Scaling Relations for Hydrocarbon Adsorption on Hexagonal Transition Metal Surfaces , 2013 .

[33]  Thomas Bligaard,et al.  Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation , 2012 .

[34]  Xinggui Zhou,et al.  First-Principles Calculations of Propane Dehydrogenation over PtSn Catalysts , 2012 .

[35]  J. Nørskov,et al.  Universal transition state scaling relations for (de)hydrogenation over transition metals. , 2011, Physical chemistry chemical physics : PCCP.

[36]  K. Honkala,et al.  Density Functional Theory Study on Propane and Propene Adsorption on Pt(111) and PtSn Alloy Surfaces , 2011 .

[37]  Xinggui Zhou,et al.  DFT study of propane dehydrogenation on Pt catalyst: effects of step sites. , 2011, Physical chemistry chemical physics : PCCP.

[38]  N. Rösch,et al.  Transformations of Ethylene on the Pd(111) Surface: A Density Functional Study , 2010 .

[39]  J. Nørskov,et al.  On the Role of Metal Step-Edges in Graphene Growth , 2010 .

[40]  K. Honkala,et al.  DFT study on complete ethylene decomposition on flat and stepped Pd , 2010 .

[41]  V. Galvita,et al.  Ethane dehydrogenation on Pt/Mg(Al)O and PtSn/Mg(Al)O catalysts , 2010 .

[42]  D. Vlachos,et al.  Hydrogenation of Ethylene and Dehydrogenation and Hydrogenolysis of Ethane on Pt(111) and Pt(211): A Density Functional Theory Study , 2010 .

[43]  Shurong Wang,et al.  Propane Dehydrogenation Over PtSn Catalysts Supported on ZnO-Modified MgAl2O4 , 2009 .

[44]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  K. Honkala,et al.  DFT Study on the Complex Reaction Networks in the Conversion of Ethylene to Ethylidyne on Flat and Stepped Pd , 2009 .

[46]  A. Andreasen,et al.  Degree of rate control: how much the energies of intermediates and transition states control rates. , 2009, Journal of the American Chemical Society.

[47]  Amjad Basha Mohammed,et al.  Ethylene Conversion to Ethylidyne over Pd(111): Revisiting the Mechanism with First-Principles Calculations , 2009 .

[48]  Thomas Bligaard,et al.  Trends in the catalytic CO oxidation activity of nanoparticles. , 2008, Angewandte Chemie.

[49]  Max Heinritz-Adrian,et al.  Dehydrogenation of Alkanes , 2008 .

[50]  G. Ghiotti,et al.  Characterization of Pt,Sn/Mg(Al)O Catalysts for Light Alkane Dehydrogenation by FT-IR Spectroscopy and Catalytic Measurements , 2007 .

[51]  Ture R. Munter,et al.  Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. , 2007, Physical review letters.

[52]  Yuming Zhou,et al.  Propane dehydrogenation on PtSn/ZSM-5 catalyst: Effect of tin as a promoter , 2006 .

[53]  Martin Kumar Patel,et al.  Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes , 2006 .

[54]  J. Nørskov,et al.  Steam Reforming and Graphite Formation on Ni Catalysts , 2002 .

[55]  Z. Karpiński,et al.  Hydrocarbon reactions on Pd–Re/Al2O3 catalysts , 2001 .

[56]  B. Hammer,et al.  Theoretical Surface Science and Catalysis — Calculations and Concepts , 2000 .

[57]  Jens K. Nørskov,et al.  Theoretical surface science and catalysis—calculations and concepts , 2000 .

[58]  J. Dumesic,et al.  Microcalorimetric, Spectroscopic, and Kinetic Studies of Silica Supported Pt and Pt/Sn Catalysts for Isobutane Dehydrogenation , 1994 .