Computer-aided diagnosis system for tissue characterization of brain tumor on magnetic resonance images

[1]  Ιωάννης Καλατζής,et al.  Improving brain tumor characterization on MRI by probabilistic neural networks and non-linear transformation of textural features , 2015 .

[2]  Frank G Zöllner,et al.  SVM-based glioma grading: Optimization by feature reduction analysis. , 2012, Zeitschrift fur medizinische Physik.

[3]  Alfredo Vellido,et al.  Classification of human brain tumours from MRS data using Discrete Wavelet Transform and Bayesian Neural Networks , 2012, Expert Syst. Appl..

[4]  Yunping Zheng,et al.  Brain Tumors Classification Based on 3D Shape , 2012 .

[5]  Omar El Beqqali,et al.  3D Model Retrieval Based on Semantic and Shape Indexes , 2011, ArXiv.

[6]  G. Ram Mohana Reddy,et al.  Efficient Fuzzy Clustering Based Approach to Brain Tumor Segmentation on MR Images , 2011 .

[7]  Stefan Bauer,et al.  Fully Automatic Segmentation of Brain Tumor Images Using Support Vector Machine Classification in Combination with Hierarchical Conditional Random Field Regularization , 2011, MICCAI.

[8]  Moacir P. Ponti,et al.  Combining Classifiers: From the Creation of Ensembles to the Decision Fusion , 2011, SIBGRAPI Tutorials.

[9]  Michalis E. Zervakis,et al.  Brain lesion classification using 3T MRS spectra and paired SVM kernels , 2011, Biomed. Signal Process. Control..

[10]  K. Thanushkodi,et al.  Certain investigation on MRI segmentation for the implementation of CAD system , 2011 .

[11]  Anna Fabijanska,et al.  Brain tumor segmentation from MRI data sets using region growing approach , 2011, Perspective Technologies and Methods in MEMS Design.

[12]  Christos Davatzikos,et al.  Investigating machine learning techniques for MRI-based classification of brain neoplasms , 2011, International Journal of Computer Assisted Radiology and Surgery.

[13]  Alfredo Vellido,et al.  Binary classification of brain tumours using a Discrete Wavelet Transform and energy criteria , 2011, 2011 IEEE Second Latin American Symposium on Circuits and Systems (LASCAS).

[14]  Mohammad Hossein Fazel Zarandi,et al.  Systematic image processing for diagnosing brain tumors: A Type-II fuzzy expert system approach , 2011, Appl. Soft Comput..

[15]  N. Jamil,et al.  Skull Stripping Magnetic Resonance Images Brain Images : Region Growing versus Mathematical Morphology , 2011 .

[16]  Changjing Shang,et al.  Combining support vector machines and information gain ranking for classification of mars McMurdo panorama images , 2010, 2010 IEEE International Conference on Image Processing.

[17]  Lok Ming Lui,et al.  ICA-based feature extraction and automatic classification of AD-related MRI data , 2010, 2010 Sixth International Conference on Natural Computation.

[18]  Nicholas Ayache,et al.  A Generative Model for Brain Tumor Segmentation in Multi-Modal Images , 2010, MICCAI.

[19]  Kuo-Kai Shyu,et al.  Fractal dimension analysis for quantifying cerebellar morphological change of multiple system atrophy of the cerebellar type (MSA-C) , 2010, NeuroImage.

[20]  Hong Juang Li,et al.  MRI brain lesion image detection based on color-converted K-means clustering segmentation , 2010 .

[21]  A. Kharrat,et al.  A Hybrid Approach for Automatic Classification of Brain MRI Using Genetic Algorithm and Support Vector Machine , 2010 .

[22]  Christos Davatzikos,et al.  Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme , 2009, Magnetic resonance in medicine.

[23]  Jonathan G. Goldin,et al.  CADrx for GBM Brain Tumors: Predicting Treatment Response from Changes in Diffusion-Weighted MRI , 2009, Algorithms.

[24]  Mahua Bhattacharya,et al.  A Study on Prognosis of Brain Tumors Using Fuzzy Logic and Genetic Algorithm Based Techniques , 2009, 2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing.

[25]  Damian Tolan,et al.  Influence of computer-aided detection false-positives on reader performance and diagnostic confidence for CT colonography. , 2009, AJR. American journal of roentgenology.

[26]  Marc Sindou,et al.  Practical Handbook of Neurosurgery From Leading Neurosurgeons , 2009 .

[27]  M. Westphal Classification of Brain Tumors and Corresponding Treatments , 2009 .

[28]  Kpalma Kidiyo,et al.  A Survey of Shape Feature Extraction Techniques , 2008 .

[29]  Gustavo Carneiro,et al.  A Discriminative Model-Constrained Graph Cuts Approach to Fully Automated Pediatric Brain Tumor Segmentation in 3-D MRI , 2008, MICCAI.

[30]  Hongmin Cai,et al.  Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. , 2008, Academic radiology.

[31]  Alan L. Yuille,et al.  Efficient Multilevel Brain Tumor Segmentation With Integrated Bayesian Model Classification , 2008, IEEE Transactions on Medical Imaging.

[32]  Mark W. Schmidt,et al.  3D Variational Brain Tumor Segmentation using a High Dimensional Feature Set , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[33]  Yang Song,et al.  IKNN: Informative K-Nearest Neighbor Pattern Classification , 2007, PKDD.

[34]  Bernardino Arcay,et al.  A new method for the initialization of clustering algorithms based on histogram analysis , 2007 .

[35]  Kunio Doi,et al.  Computer-aided diagnosis in medical imaging: Historical review, current status and future potential , 2007, Comput. Medical Imaging Graph..

[36]  Wenjia Wang,et al.  On diversity and accuracy of homogeneous and heterogeneous ensembles , 2007, Int. J. Hybrid Intell. Syst..

[37]  Bradley D. Clymer,et al.  Three-dimensional texture analysis of cancellous bone cores evaluated at clinical CT resolutions , 2006, Osteoporosis International.

[38]  Jie Yang,et al.  Semi-automated brain tumor and edema segmentation using MRI. , 2005, European journal of radiology.

[39]  Vladimir Vapnik,et al.  Universal learning technology : Support vector machines , 2005 .

[40]  A. Sowmya,et al.  Efficient feature selection based on independent component analysis , 2004, Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference, 2004..

[41]  Guido Gerig,et al.  A brain tumor segmentation framework based on outlier detection , 2004, Medical Image Anal..

[42]  Hamid Soltanian-Zadeh,et al.  Comparison of 2D and 3D wavelet features for TLE lateralization , 2004, SPIE Medical Imaging.

[43]  D. Kopec,et al.  Human Errors in Medical Practice: Systematic Classification and Reduction with Automated Information Systems , 2003, Journal of Medical Systems.

[44]  Hyun-Chul Kim,et al.  Constructing support vector machine ensemble , 2003, Pattern Recognit..

[45]  Mausumi Acharyya,et al.  Extraction of Features Using M-Band Wavelet Packet Frame and Their Neuro-Fuzzy Evaluation for Multitexture Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  E Le Rumeur,et al.  MRI texture analysis on texture test objects, normal brain and intracranial tumors. , 2003, Magnetic resonance imaging.

[47]  Ronald Marsh,et al.  Fractal analysis of tumor in brain MR images , 2003, Machine Vision and Applications.

[48]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[49]  Guido Gerig,et al.  Model-based brain and tumor segmentation , 2002, Object recognition supported by user interaction for service robots.

[50]  John F. Kolen,et al.  Reducing the time complexity of the fuzzy c-means algorithm , 2002, IEEE Trans. Fuzzy Syst..

[51]  Guido Gerig,et al.  Valmet: A New Validation Tool for Assessing and Improving 3D Object Segmentation , 2001, MICCAI.

[52]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[53]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[54]  Yan Zhu,et al.  Computerized tumor boundary detection using a Hopfield neural network , 1997, IEEE Transactions on Medical Imaging.

[55]  W. Bradley,et al.  MRI: The Basics , 1997 .

[56]  Josef Kittler,et al.  Combining classifiers , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[57]  Jack Sklansky,et al.  A note on genetic algorithms for large-scale feature selection , 1989, Pattern Recognit. Lett..

[58]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[59]  James C. Bezdek,et al.  Efficient Implementation of the Fuzzy c-Means Clustering Algorithms , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[60]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[61]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..