Self‐similarity Analysis for Motion Capture Cleaning

Motion capture sequences may contain erroneous data, especially when the motion is complex or performers are interacting closely and occlusions are frequent. Common practice is to have specialists visually detect the abnormalities and fix them manually. In this paper, we present a method to automatically analyze and fix motion capture sequences by using self‐similarity analysis. The premise of this work is that human motion data has a high‐degree of self‐similarity. Therefore, given enough motion data, erroneous motions are distinct when compared to other motions. We utilize motion‐words that consist of short sequences of transformations of groups of joints around a given motion frame. We search for the K‐nearest neighbors (KNN) set of each word using dynamic time warping and use it to detect and fix erroneous motions automatically. We demonstrate the effectiveness of our method in various examples, and evaluate by comparing to alternative methods and to manual cleaning.

[1]  Joseph Rothweiler,et al.  Polyphase quadrature filters-A new subband coding technique , 1983, ICASSP.

[2]  Michael F. Cohen,et al.  Verbs and Adverbs: Multidimensional Motion Interpolation , 1998, IEEE Computer Graphics and Applications.

[3]  Pascal Fua,et al.  Skeleton-based motion capture for robust reconstruction of human motion , 2000, Proceedings Computer Animation 2000.

[4]  Sung Yong Shin,et al.  Computer puppetry: An importance-based approach , 2001, TOGS.

[5]  Harry Shum,et al.  Motion texture: a two-level statistical model for character motion synthesis , 2002, ACM Trans. Graph..

[6]  Jessica K. Hodgins,et al.  Interactive control of avatars animated with human motion data , 2002, SIGGRAPH.

[7]  Victor B. Zordan,et al.  Mapping optical motion capture data to skeletal motion using a physical model , 2003, SCA '03.

[8]  Lucas Kovar,et al.  Flexible automatic motion blending with registration curves , 2003, SCA '03.

[9]  Bobby Bodenheimer,et al.  An evaluation of a cost metric for selecting transitions between motion segments , 2003, SCA '03.

[10]  Jovan Popovic,et al.  Example-based control of human motion , 2004, SCA '04.

[11]  Dimitrios Gunopulos,et al.  Indexing Large Human-Motion Databases , 2004, VLDB.

[12]  Michael Gleicher,et al.  Automated extraction and parameterization of motions in large data sets , 2004, SIGGRAPH 2004.

[13]  Tido Röder,et al.  Efficient content-based retrieval of motion capture data , 2005, SIGGRAPH 2005.

[14]  Jessica K. Hodgins,et al.  Performance animation from low-dimensional control signals , 2005, SIGGRAPH 2005.

[15]  James M. Rehg,et al.  A data-driven approach to quantifying natural human motion , 2005, SIGGRAPH '05.

[16]  Eugene Fiume,et al.  An efficient search algorithm for motion data using weighted PCA , 2005, SCA '05.

[17]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[18]  Hyeong-Seok Ko,et al.  A physically-based motion retargeting filter , 2005, TOGS.

[19]  Guodong Liu,et al.  Estimation of missing markers in human motion capture , 2006, The Visual Computer.

[20]  Sang Il Park,et al.  Capturing and animating skin deformation in human motion , 2006, ACM Trans. Graph..

[21]  Jessica K. Hodgins,et al.  Capturing and animating skin deformation in human motion , 2006, SIGGRAPH 2006.

[22]  David A. Forsyth,et al.  Quick transitions with cached multi-way blends , 2007, SI3D.

[23]  B. Schölkopf,et al.  Modeling Human Motion Using Binary Latent Variables , 2007 .

[24]  Nadia Magnenat-Thalmann,et al.  A simple footskate removal method for virtual reality applications , 2007, The Visual Computer.

[25]  Jessica K. Hodgins,et al.  Action capture with accelerometers , 2008, SCA '08.

[26]  Philippe Beaudoin,et al.  Motion-motif graphs , 2008, SCA '08.

[27]  Meinard Müller,et al.  Dynamic Time Warping , 2008 .

[28]  Lucas Kovar,et al.  Motion graphs , 2002, SIGGRAPH '08.

[29]  James M. Rehg,et al.  Detection of Unnatural Movement Using Epitomic Analysis , 2008, 2008 Seventh International Conference on Machine Learning and Applications.

[30]  Nancy Argüelles,et al.  Author ' s , 2008 .

[31]  Arno Zinke,et al.  Fast local and global similarity searches in large motion capture databases , 2010, SCA '10.

[32]  Taku Komura,et al.  Spatial relationship preserving character motion adaptation , 2010, SIGGRAPH 2010.

[33]  Christos Faloutsos,et al.  BoLeRO: a principled technique for including bone length constraints in motion capture occlusion filling , 2010, SCA '10.

[34]  Jinxiang Chai,et al.  Example-Based Human Motion Denoising , 2010, IEEE Transactions on Visualization and Computer Graphics.

[35]  Andreas Aristidou,et al.  Real-time marker prediction and CoR estimation in optical motion capture , 2011, The Visual Computer.

[36]  Hans-Peter Seidel,et al.  Motion reconstruction using sparse accelerometer data , 2011, TOGS.

[37]  Baining Guo,et al.  Exemplar-based human action pose correction and tagging , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Yaser Sheikh,et al.  Bilinear spatiotemporal basis models , 2012, TOGS.

[39]  Jessica K. Hodgins,et al.  Video-based 3D motion capture through biped control , 2012, ACM Trans. Graph..

[40]  Norman I. Badler,et al.  Efficient motion retrieval in large motion databases , 2013, I3D '13.

[41]  Andrew W. Fitzgibbon,et al.  Real-time human pose recognition in parts from single depth images , 2011, CVPR 2011.

[42]  Jessica K. Hodgins,et al.  Generating and ranking diverse multi-character interactions , 2014, ACM Trans. Graph..

[43]  Zhen Cui,et al.  Automatic motion capture data denoising via filtered subspace clustering and low rank matrix approximation , 2014, Signal Process..

[44]  Yueting Zhuang,et al.  Sparse motion bases selection for human motion denoising , 2015, Signal Process..

[45]  Andreas Aristidou,et al.  Emotion Analysis and Classification: Understanding the Performers' Emotions Using the LMA Entities , 2015, Comput. Graph. Forum.

[46]  Taku Komura,et al.  Learning motion manifolds with convolutional autoencoders , 2015, SIGGRAPH Asia Technical Briefs.

[47]  Ariel Shamir,et al.  A Survey on Data‐Driven Video Completion , 2015, Comput. Graph. Forum.

[48]  Xin Liu,et al.  Hierarchical block-based incomplete human mocap data recovery using adaptive nonnegative matrix factorization , 2015, Comput. Graph..

[49]  Xuelong Li,et al.  Mining Spatial-Temporal Patterns and Structural Sparsity for Human Motion Data Denoising , 2015, IEEE Transactions on Cybernetics.

[50]  Daniel Cohen-Or,et al.  Time-varying weathering in texture space , 2016, ACM Trans. Graph..

[51]  Andreas Aristidou,et al.  Extending FABRIK with model constraints , 2016, Comput. Animat. Virtual Worlds.

[52]  Xiaolei Lv,et al.  Data-driven inverse dynamics for human motion , 2016, ACM Trans. Graph..

[53]  Guoqing Zhang,et al.  Human motion recovery jointly utilizing statistical and kinematic information , 2016, Inf. Sci..

[54]  Øyvind Gløersen,et al.  Predicting Missing Marker Trajectories in Human Motion Data Using Marker Intercorrelations , 2016, PloS one.

[55]  Joan Lasenby,et al.  Estimating missing marker positions using low dimensional Kalman smoothing. , 2016, Journal of biomechanics.

[56]  H. Hummler,et al.  The Effects of Lung Protective Ventilation or Hypercapnic Acidosis on Gas Exchange and Lung Injury in Surfactant Deficient Rabbits , 2016, PloS one.

[57]  Hans-Peter Seidel,et al.  VNect , 2017, ACM Trans. Graph..

[58]  Charles Malleson,et al.  Total Capture: 3D Human Pose Estimation Fusing Video and Inertial Sensors , 2017, BMVC.