Solitary, explosive, and periodic solutions of the quantum Zakharov-Kuznetsov equation and its transverse instability

By employing the quantum hydrodynamic model and the reductive perturbation technique, a quantum Zakharov-Kuznetsov (QZK) equation is derived for finite but small amplitude ion-acoustic waves in a quantum magnetoplasma. The extended Conte's truncation method is used to obtain the solitary, explosive, and periodic solutions of the QZK equation. Furthermore, the stability of the solitary wave solution of the QZK equation is investigated by using the small-k perturbation expansion method.

[1]  P. Shukla,et al.  Fully nonlinear ion-sound waves in a dense Fermi magnetoplasma , 2007 .

[2]  P. Shukla,et al.  Instability of drift-like waves and cross-field charged particle transport in a nonuniform collisional quantum magnetoplasma , 2007 .

[3]  P. Shukla,et al.  Quantum dust-acoustic double layers , 2007 .

[4]  P. Shukla,et al.  Nonlinear instability and dynamics of polaritons in quantum systems , 2007 .

[5]  L. Ang,et al.  Ultrashort-pulse child-langmuir law in the quantum and relativistic regimes. , 2007, Physical review letters.

[6]  P. Shukla,et al.  Streaming instability in quantum dusty plasmas , 2007 .

[7]  F. Haas Variational approach for the quantum Zakharov system , 2007, physics/0701253.

[8]  O. Landen,et al.  Observations of plasmons in warm dense matter. , 2006, Physical review letters.

[9]  S. El-Labany,et al.  Effects of two-temperature ions, magnetic field, and higher-order nonlinearity on the existence and stability of dust-acoustic solitary waves in Saturn’s F ring , 2006 .

[10]  Jayasree Das,et al.  Stability of an alternative solitary-wave solution of an ion-acoustic wave obtained from the MKdV-KdV-ZK equation in magnetized non-thermal plasma consisting of warm adiabatic ions , 2006 .

[11]  P. Shukla,et al.  Formation and dynamics of dark solitons and vortices in quantum electron plasmas. , 2006, Physical review letters.

[12]  H. Gee Evolution: Experiments in botany , 2006, Nature.

[13]  T. Kwan,et al.  Space-charge-limited flows in the quantum regime , 2006 .

[14]  G. V. Shpatakovskaya Semiclassical model of a one-dimensional quantum dot , 2006 .

[15]  P. Shukla,et al.  Dust acoustic solitary waves in a quantum plasma , 2006 .

[16]  P. Shukla,et al.  Nonlinear collective effects in photon-photon and photon-plasma interactions , 2006, hep-ph/0602123.

[17]  Karl H. Schoenbach,et al.  Microplasmas and applications , 2006 .

[18]  W. Ho,et al.  Nonideal strongly magnetized plasmas of neutron stars and their electromagnetic radiation , 2005, astro-ph/0512088.

[19]  Christos Christodoulatos,et al.  Environmental and biological applications of microplasmas , 2005 .

[20]  P. Shukla,et al.  Dust acoustic waves in quantum plasmas , 2005 .

[21]  E. Parkes,et al.  The stability of obliquely-propagating solitary-wave solutions to Zakharov–Kuznetsov-type equations , 2005, Journal of Plasma Physics.

[22]  M. Lukin,et al.  Quantum optics with surface plasmons. , 2005, Physical review letters.

[23]  F. Haas A magnetohydrodynamic model for quantum plasmas , 2005 .

[24]  F. Haas,et al.  Modified Zakharov equations for plasmas with a quantum correction , 2004, physics/0410251.

[25]  T. Kwan,et al.  Simple derivation of quantum scaling in Child-Langmuir law , 2004, IEEE Transactions on Plasma Science.

[26]  T. Kwan,et al.  New scaling of child-langmuir law in the quantum regime. , 2003, Physical review letters.

[27]  F. Haas,et al.  Quantum ion-acoustic waves , 2003 .

[28]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[29]  Abdullah Al Mamun,et al.  Solitons, shocks and vortices in dusty plasmas , 2003 .

[30]  G. Chabrier,et al.  Dense astrophysical plasmas , 2002, physics/0211089.

[31]  S. Lou,et al.  Solutions of a (2+1)-dimensional dispersive long wave equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  M. Lisak,et al.  Statistical effects in the multistream model for quantum plasmas. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Abdullah Al Mamun,et al.  Cylindrical and spherical dust ion–acoustic solitary waves , 2002 .

[34]  M. Hellberg,et al.  Unified derivation of Korteweg-de Vries- Zakharov-Kuznetsov equations in multispecies plasmas , 2002 .

[35]  Abdullah Al Mamun,et al.  Spherical and cylindrical dust acoustic solitary waves , 2001 .

[36]  Young-Dae Jung,et al.  Quantum-mechanical effects on electron–electron scattering in dense high-temperature plasmas , 2001 .

[37]  Dean E. Dauger,et al.  Nuclear reaction rates and energy in stellar plasmas: The effect of highly damped modes , 2001, astro-ph/0105153.

[38]  E. Parkes,et al.  Stability of solitary-wave solutions to a modified Zakharov–Kuznetsov equation , 2000, Journal of Plasma Physics.

[39]  E. Parkes,et al.  The derivation of a modified Zakharov–Kuznetsov equation and the stability of its solutions , 1999, Journal of Plasma Physics.

[40]  A. Mamun Compressive and Rarefactive Dust-acoustic Solitary Structures in a Magnetized Two-ion-temperature Dusty Plasma , 1998 .

[41]  Abdullah Al Mamun,et al.  Stability of solitary waves in a magnetized non-thermal plasma , 1996, Journal of Plasma Physics.

[42]  P. Shukla,et al.  Vortex streets driven by sheared flow and applications to black aurora , 1995 .

[43]  G. Rowlands,et al.  Stability of obliquely propagating plane solitons of the Zakharov–Kuznetsov equation , 1995, Journal of Plasma Physics.

[44]  Robert Conte,et al.  Invariant Painlevé analysis of partial differential equations , 1989 .

[45]  M. Yu,et al.  Exact solitary ion acoustic waves in a magnetoplasma , 1978 .

[46]  H. Washimi,et al.  ON THE PROPAGATION OF ION ACOUSTIC SOLITARY WAVES OF SMALL AMPLITUDE. , 1966 .

[47]  S. El-Labany,et al.  Higher-Order Contributions to Dust-Acoustic Waves in a Magnetized Dusty Plasmas , 2002 .

[48]  G. Rowlands,et al.  Nonlinear Waves, Solitons and Chaos: Frontmatter , 2000 .

[49]  C. Schmeiser,et al.  Semiconductor equations , 1990 .