Transposable Element Domestication As an Adaptation to Evolutionary Conflicts.

[1]  D. Schatz,et al.  New insights into the evolutionary origins of the recombination‐activating gene proteins and V(D)J recombination , 2017, The FEBS journal.

[2]  J. Doudna,et al.  CRISPR-Cas9 Structures and Mechanisms. , 2017, Annual review of biophysics.

[3]  D. Weigel,et al.  Arabidopsis proteins with a transposon-related domain act in gene silencing , 2017, Nature Communications.

[4]  F. Guérin,et al.  Flow cytometry sorting of nuclei enables the first global characterization of Paramecium germline DNA and transposable elements , 2017, BMC Genomics.

[5]  P. Bieniasz,et al.  Co-option of an endogenous retrovirus envelope for host defense in hominid ancestors , 2017, eLife.

[6]  Kira S. Makarova,et al.  Diversity and evolution of class 2 CRISPR–Cas systems , 2017, Nature Reviews Microbiology.

[7]  C. Feschotte,et al.  Regulatory activities of transposable elements: from conflicts to benefits , 2016, Nature Reviews Genetics.

[8]  M. Bétermier,et al.  Multimerization properties of PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements , 2017, Nucleic acids research.

[9]  R. McLaughlin,et al.  Genetic conflicts: the usual suspects and beyond , 2017, Journal of Experimental Biology.

[10]  Y. C. G. Lee,et al.  Recurrent Innovation at Genes Required for Telomere Integrity in Drosophila , 2016, Molecular biology and evolution.

[11]  M. Yao,et al.  The piggyBac transposon-derived genes TPB1 and TPB6 mediate essential transposon-like excision during the developmental rearrangement of key genes in Tetrahymena thermophila , 2016, Genes & development.

[12]  Vivek Krishnakumar,et al.  Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome , 2016, eLife.

[13]  E. Koonin,et al.  Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems , 2016, Nucleic acids research.

[14]  D. Haig Transposable elements: Self‐seekers of the germline, team‐players of the soma , 2016, BioEssays : news and reviews in molecular, cellular and developmental biology.

[15]  D. Schatz,et al.  Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination , 2016, Cell.

[16]  H. Cam,et al.  Restriction of Retrotransposon Mobilization in Schizosaccharomyces pombe by Transcriptional Silencing and Higher-Order Chromatin Organization , 2016, Genetics.

[17]  H. Kazazian,et al.  Roles for retrotransposon insertions in human disease , 2016, Mobile DNA.

[18]  M. Blanchette,et al.  Phylogenetic and Genomic Analyses Resolve the Origin of Important Plant Genes Derived from Transposable Elements , 2016, Molecular biology and evolution.

[19]  G. Mohr,et al.  Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase–Cas1 fusion protein , 2016, Science.

[20]  L. Maquat,et al.  Retrotransposons as regulators of gene expression , 2016, Science.

[21]  Phylogenomic analysis reveals genome-wide purifying selection on TBE transposons in the ciliate Oxytricha , 2016, Mobile DNA.

[22]  Wei Chen,et al.  Genome-wide Profiling Reveals Remarkable Parallels Between Insertion Site Selection Properties of the MLV Retrovirus and the piggyBac Transposon in Primary Human CD4+ T Cells , 2016, Molecular therapy : the journal of the American Society of Gene Therapy.

[23]  P. Deininger,et al.  Insertion of Retrotransposons at Chromosome Ends: Adaptive Response to Chromosome Maintenance , 2016, Front. Genet..

[24]  Erik Kaestner,et al.  The Origins Of Genome Architecture , 2016 .

[25]  E. Koonin,et al.  ISC, a Novel Group of Bacterial and Archaeal DNA Transposons That Encode Cas9 Homologs , 2015, Journal of bacteriology.

[26]  G. V. James,et al.  Kicking against the PRCs – A Domesticated Transposase Antagonises Silencing Mediated by Polycomb Group Proteins and Is an Accessory Component of Polycomb Repressive Complex 2 , 2015, PLoS genetics.

[27]  F. Dyda,et al.  The casposon-encoded Cas1 protein from Aciduliprofundum boonei is a DNA integrase that generates target site duplications , 2015, Nucleic acids research.

[28]  D. Haig Going retro: Transposable elements, embryonic stem cells, and the mammalian placenta (retrospective on DOI 10.1002/bies.201300059) , 2015, BioEssays : news and reviews in molecular, cellular and developmental biology.

[29]  Sita J. Saunders,et al.  An updated evolutionary classification of CRISPR–Cas systems , 2015, Nature Reviews Microbiology.

[30]  H. Cam,et al.  Suppression of Meiotic Recombination by CENP-B Homologs in Schizosaccharomyces pombe , 2015, Genetics.

[31]  D. Schroeder,et al.  Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas , 2015, PLoS genetics.

[32]  R. Mueller,et al.  DNA transposons have colonized the genome of the giant virus Pandoravirus salinus , 2015, BMC Biology.

[33]  Eugene V Koonin,et al.  Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon , 2015, Biology Direct.

[34]  E. Koonin,et al.  Evolution of adaptive immunity from transposable elements combined with innate immune systems , 2014, Nature Reviews Genetics.

[35]  C. Feschotte,et al.  Fighting Fire with Fire: Endogenous Retrovirus Envelopes as Restriction Factors , 2015, Journal of Virology.

[36]  Cédric Feschotte,et al.  Ancient Transposable Elements Transformed the Uterine Regulatory Landscape and Transcriptome during the Evolution of Mammalian Pregnancy , 2015, Cell reports.

[37]  Jennifer A. Doudna,et al.  Integrase-mediated spacer acquisition during CRISPR–Cas adaptive immunity , 2015, Nature.

[38]  Gérard Pierron,et al.  Retroviral envelope gene captures and syncytin exaptation for placentation in marsupials , 2015, Proceedings of the National Academy of Sciences.

[39]  M. Belfort,et al.  Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution. , 2015, Microbiology spectrum.

[40]  C. Kozak Origins of the Endogenous and Infectious Laboratory Mouse Gammaretroviruses , 2014, Viruses.

[41]  C. Feschotte,et al.  Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications. , 2014, Trends in genetics : TIG.

[42]  Athanasia C. Tzika,et al.  Retroviral envelope syncytin capture in an ancestrally diverged mammalian clade for placentation in the primitive Afrotherian tenrecs , 2014, Proceedings of the National Academy of Sciences.

[43]  Janet M. Young,et al.  Positive Selection and Multiple Losses of the LINE-1-Derived L1TD1 Gene in Mammals Suggest a Dual Role in Genome Defense and Pluripotency , 2014, PLoS genetics.

[44]  Laura F. Landweber,et al.  The Architecture of a Scrambled Genome Reveals Massive Levels of Genomic Rearrangement during Development , 2014, Cell.

[45]  L. Carbone,et al.  Inference of Transposable Element Ancestry , 2014, PLoS genetics.

[46]  Josefa González,et al.  Pogo-like Transposases Have Been Repeatedly Domesticated into CENP-B-Related Proteins , 2014, Genome biology and evolution.

[47]  E. Koonin,et al.  Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity , 2014, BMC Biology.

[48]  M. Yap,et al.  Evolution of the Retroviral Restriction Gene Fv1: Inhibition of Non-MLV Retroviruses , 2014, PLoS pathogens.

[49]  Alexander Vogt,et al.  A Domesticated PiggyBac Transposase Interacts with Heterochromatin and Catalyzes Reproducible DNA Elimination in Tetrahymena , 2013, PLoS genetics.

[50]  E. Chuong Retroviruses facilitate the rapid evolution of the mammalian placenta , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[51]  T. Heidmann,et al.  Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[52]  D. Chalker,et al.  LIA5 Is Required for Nuclear Reorganization and Programmed DNA Rearrangements Occurring during Tetrahymena Macronuclear Differentiation , 2013, PloS one.

[53]  Jumpei Ito,et al.  Refrex-1, a Soluble Restriction Factor against Feline Endogenous and Exogenous Retroviruses , 2013, Journal of Virology.

[54]  L. Landweber,et al.  Transposon Domestication versus Mutualism in Ciliate Genome Rearrangements , 2013, PLoS genetics.

[55]  J. Sugimoto,et al.  A novel human endogenous retroviral protein inhibits cell-cell fusion , 2013, Scientific Reports.

[56]  T. Heidmann,et al.  Differential Evolutionary Fate of an Ancestral Primate Endogenous Retrovirus Envelope Gene, the EnvV Syncytin, Captured for a Function in Placentation , 2013, PLoS genetics.

[57]  J. Baker,et al.  Endogenous retroviruses function as species-specific enhancer elements in the placenta , 2013, Nature Genetics.

[58]  D. Mager,et al.  Transposable elements: an abundant and natural source of regulatory sequences for host genes. , 2012, Annual review of genetics.

[59]  Benjamin E. Lauderdale,et al.  The Paramecium Germline Genome Provides a Niche for Intragenic Parasitic DNA: Evolutionary Dynamics of Internal Eliminated Sequences , 2012, PLoS genetics.

[60]  Douglas R. Hoen,et al.  A Gene Family Derived from Transposable Elements during Early Angiosperm Evolution Has Reproductive Fitness Benefits in Arabidopsis thaliana , 2012, PLoS genetics.

[61]  Casey M. Bergman,et al.  Evolutionary Genomics of Transposable Elements in Saccharomyces cerevisiae , 2012, PloS one.

[62]  Kevin C. Roach,et al.  Rapid evolution of centromeres and centromeric/kinetochore proteins , 2012 .

[63]  M. Batzer,et al.  Repetitive Elements May Comprise Over Two-Thirds of the Human Genome , 2011, PLoS genetics.

[64]  Nikhil A. Joshi,et al.  Genome-Scale Analysis of Programmed DNA Elimination Sites in Tetrahymena thermophila , 2011, G3: Genes | Genomes | Genetics.

[65]  T. Heidmann,et al.  A pair of co-opted retroviral envelope syncytin genes is required for formation of the two-layered murine placental syncytiotrophoblast , 2011, Proceedings of the National Academy of Sciences.

[66]  N. Negre,et al.  Characterization of a CENP-B homolog in the holocentric Lepidoptera Spodoptera frugiperda. , 2011, Gene.

[67]  J. V. Moran,et al.  Dynamic interactions between transposable elements and their hosts , 2011, Nature Reviews Genetics.

[68]  M. Pardue,et al.  Retrotransposons that maintain chromosome ends , 2011, Proceedings of the National Academy of Sciences.

[69]  M. Pardue,et al.  Adapting to life at the end of the line , 2011, Mobile genetic elements.

[70]  A. Mushegian,et al.  Prp8, the pivotal protein of the spliceosomal catalytic center, evolved from a retroelement-encoded reverse transcriptase. , 2011, RNA.

[71]  H. Hoekstra,et al.  Maternal-fetal conflict: rapidly evolving proteins in the rodent placenta. , 2010, Molecular biology and evolution.

[72]  M. Yao,et al.  A Domesticated piggyBac Transposase Plays Key Roles in Heterochromatin Dynamics and DNA Cleavage during Programmed DNA Deletion in Tetrahymena thermophila , 2010, Molecular biology of the cell.

[73]  R. Barrangou,et al.  CRISPR/Cas, the Immune System of Bacteria and Archaea , 2010, Science.

[74]  Guillaume Bourque,et al.  Transposable elements in gene regulation and in the evolution of vertebrate genomes. , 2009, Current opinion in genetics & development.

[75]  Aurélie Kapusta,et al.  PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia. , 2009, Genes & development.

[76]  P. Opolon,et al.  Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene , 2009, Proceedings of the National Academy of Sciences.

[77]  L. Landweber,et al.  A Functional Role for Transposases in a Large Eukaryotic Genome , 2009, Science.

[78]  J. R. van der Ploeg Analysis of CRISPR in Streptococcus mutans suggests frequent occurrence of acquired immunity against infection by M102-like bacteriophages. , 2009, Microbiology.

[79]  M. Belfort,et al.  The take and give between retrotransposable elements and their hosts. , 2008, Annual review of genetics.

[80]  C. Feschotte Transposable elements and the evolution of regulatory networks , 2008, Nature Reviews Genetics.

[81]  N. Craig,et al.  piggyBac can bypass DNA synthesis during cut and paste transposition , 2008, The EMBO journal.

[82]  D. Haig,et al.  Placental growth hormone-related proteins and prolactin-related proteins. , 2008, Placenta.

[83]  S. Grewal,et al.  Host genome surveillance for retrotransposons by transposon-derived proteins , 2008, Nature.

[84]  C. Casola,et al.  Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. , 2007, Molecular biology and evolution.

[85]  H. Masumoto,et al.  CENP-B Controls Centromere Formation Depending on the Chromatin Context , 2007, Cell.

[86]  C. Feschotte,et al.  DNA transposons and the evolution of eukaryotic genomes. , 2007, Annual review of genetics.

[87]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[88]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[89]  Eugene V. Koonin,et al.  Introns and the origin of nucleus–cytosol compartmentalization , 2006, Nature.

[90]  R. Trivers,et al.  Genes in Conflict , 2006 .

[91]  C. Kozak,et al.  Rmcf2, a Xenotropic Provirus in the Asian Mouse Species Mus castaneus, Blocks Infection by Polytropic Mouse Gammaretroviruses , 2005, Journal of Virology.

[92]  J. Jurka,et al.  RAG1 Core and V(D)J Recombination Signal Sequences Were Derived from Transib Transposons , 2005, PLoS biology.

[93]  Harmit S. Malik Mimulus finds centromeres in the driver's seat. , 2005, Trends in ecology & evolution.

[94]  T. Lange T-loops and the origin of telomeres , 2004, Nature Reviews Molecular Cell Biology.

[95]  D. Prescott,et al.  DNA of ciliated protozoa , 1971, Chromosoma.

[96]  John F. McDonald,et al.  Molecular domestication of mobile elements , 2004, Genetica.

[97]  Keith M. Derbyshire,et al.  The outs and ins of transposition: from Mu to Kangaroo , 2003, Nature Reviews Molecular Cell Biology.

[98]  T. Spencer,et al.  Receptor Usage and Fetal Expression of Ovine Endogenous Betaretroviruses: Implications for Coevolution of Endogenous and Exogenous Retroviruses , 2003, Journal of Virology.

[99]  H. Masumoto,et al.  CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA , 2002, The Journal of cell biology.

[100]  M. Gellert V(D)J recombination: RAG proteins, repair factors, and regulation. , 2002, Annual review of biochemistry.

[101]  S. Henikoff,et al.  The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA , 2001, Science.

[102]  M. Baum,et al.  Fission Yeast Homologs of Human CENP-B Have Redundant Functions Affecting Cell Growth and Chromosome Segregation , 2000, Molecular and Cellular Biology.

[103]  J. Seger,et al.  Selection on the protein-coding genes of the TBE1 family of transposable elements in the ciliates Oxytricha fallax and O. trifallax. , 1997, Molecular biology and evolution.

[104]  T R Hughes,et al.  Reverse transcriptase motifs in the catalytic subunit of telomerase. , 1997, Science.

[105]  Jonathan P. Stoye,et al.  Positional cloning of the mouse retrovirus restriction gene Fvl , 1996, Nature.

[106]  A. Smit,et al.  Tiggers and DNA transposon fossils in the human genome. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[107]  T. Moore,et al.  Genomic imprinting in mammalian development: a parental tug-of-war. , 1991, Trends in genetics : TIG.

[108]  D. Schatz,et al.  RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. , 1990, Science.

[109]  F. N. Cole SECTION B--PHYSICS. I. , 1908, Science.