Affine Parikh automata

The Parikh finite word automaton (PA) was introduced and studied in 2003 by Klaedtke and Rues. Natural variants of the PA arise from viewing a PA equivalently as an automaton that keeps a count of its transitions and semilinearly constrains their numbers. Here we adopt this view and define the affine PA , that extends the PA by having each transition induce an affine transformation on the PA registers, and the PA on letters , that restricts the PA by forcing any two transitions on the same letter to affect the registers equally. Then we report on the expressiveness, closure, and decidability properties of such PA variants. We note that deterministic PA are strictly weaker than deterministic reversal-bounded counter machines.

[1]  S. Ginsburg,et al.  Semigroups, Presburger formulas, and languages. , 1966 .

[2]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Presburger Arithmetic Constraints (Extended Abstract) , 1995, SAS.

[3]  Denis Thérien,et al.  Logic Meets Algebra: the Case of Regular Languages , 2007, Log. Methods Comput. Sci..

[4]  Heribert Vollmer,et al.  Extensional Uniformity for Boolean Circuits , 2008, SIAM J. Comput..

[5]  Franz-Josef Brandenburg,et al.  Analogies of PAL and COPY , 1981, FCT.

[6]  Robert Cedergren,et al.  Guided tour , 1990, Nature.

[7]  Oscar H. Ibarra,et al.  A Technique for Proving Decidability of Containment and Equivalence of Linear Constraint Queries , 1999, J. Comput. Syst. Sci..

[8]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[9]  Brenda S. Baker,et al.  Reversal-Bounded Multipushdown Machines , 1974, J. Comput. Syst. Sci..

[10]  S. Ginsburg,et al.  Finite-Turn Pushdown Automata , 1966 .

[11]  Sheila A. Greibach,et al.  A note on undecidable properties of formal languages , 1968, Mathematical systems theory.

[12]  Felix Klaedtke,et al.  Monadic Second-Order Logics with Cardinalities , 2003, ICALP.

[13]  Jim Melton,et al.  XML schema , 2003, SGMD.

[14]  Oscar H. Ibarra,et al.  One-Reversal Counter Machines and Multihead Automata: Revisited , 2011, SOFSEM.

[15]  Oscar H. Ibarra,et al.  Counter Machines and Verification Problems , 2002, Theor. Comput. Sci..

[16]  Thomas Schwentick,et al.  Numerical document queries , 2003, PODS.

[17]  Oscar H. Ibarra,et al.  Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.

[18]  G. Oppenheim,et al.  A Guided Tour , 2007 .

[19]  Ronald V. Book,et al.  Reversal-Bounded Acceptors and Intersections of Linear Languages , 1974, SIAM J. Comput..

[20]  Wong Karianto Parikh Automata with Pushdown Stack , 2004 .

[21]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[22]  Michel Latteux Mots infinis et langages commutatifs , 1978, RAIRO Theor. Informatics Appl..

[23]  Rupak Majumdar,et al.  Bounded underapproximations , 2008, Formal Methods Syst. Des..

[24]  Jeanne Ferrante,et al.  A Decision Procedure for the First Order Theory of Real Addition with Order , 1975, SIAM J. Comput..

[25]  Silvano Dal-Zilio,et al.  XML Schema, Tree Logic and Sheaves Automata , 2003, RTA.

[26]  Charles Steinhorn,et al.  Tame Topology and O-Minimal Structures , 2008 .

[27]  S.-Y. Kuroda,et al.  Classes of Languages and Linear-Bounded Automata , 1964, Inf. Control..