Using circuit analogies for analysis of cochlear models

PurposeDespite all the simplifications that are applied to make a cochlear model mathematically tractable, the time domain or frequency domain analysis of a cochlear model can still be a challenging problem. This paper presents a simple and effective approach to implementation of such models.MethodsA framework is developed by which a one-dimensional nonlinear cochlear model can be represented by equivalent circuits. The circuit then can be analysed in SPICE (Simulation Program with Integrated Circuit Emphasis).ResultsThe simulation results of the equivalent circuits are similar those achievable by other numerical methods.ConclusionsThe equivalent circuit representation of the model is easy to develop and implement in a circuit simulator such as SPICE. Moreover, the numerical methods which are used in SPICE are both fast and efficient for implementation of a cochlear model.

[1]  Daniele Bertaccini,et al.  Fast numerical solution of nonlinear nonlocal cochlear models , 2011, J. Comput. Phys..

[2]  Stephen J. Elliott,et al.  An Electromechanical Model for the Cochlear Microphonic , 2011 .

[3]  W. S. Rhode Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. , 1971, The Journal of the Acoustical Society of America.

[4]  Donald Lloyd Watts,et al.  Cochlear Mechanics: Analysis and Analog VLSI , 1993 .

[5]  Stephen J. Elliott,et al.  Erratum: “A state space model for cochlear mechanics” [J. Acoust. Soc. Am. 122(5), 2759–2771 (2007)] , 2011 .

[6]  Jont B. Allen,et al.  Erratum: “A parametric study of cochlear input impedance” [J. Acoust. Soc. Am. 89, 287–309 (1991)] , 1991 .

[7]  Paul D. Teal,et al.  Modelling the generation of the cochlear microphonic , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[8]  S. Neely,et al.  A model for active elements in cochlear biomechanics. , 1986, The Journal of the Acoustical Society of America.

[9]  Craig T. Jin,et al.  An Active 2-D Silicon Cochlea , 2008, IEEE Transactions on Biomedical Circuits and Systems.

[10]  Bo Wen,et al.  Modeling the nonlinear active cochlea: Mathematics and analog VLSI , 2006 .

[11]  Allyn E. Hubbard,et al.  How Much Do Somatic and Hair Bundle Motility Contribute to Cochlear Amplification , 2011 .

[12]  I. J. Russell,et al.  Cochlear Receptor Potentials , 2008 .

[13]  D. D. Greenwood A cochlear frequency-position function for several species--29 years later. , 1990, The Journal of the Acoustical Society of America.

[14]  R. Fettiplace,et al.  The sensory and motor roles of auditory hair cells , 2006, Nature Reviews Neuroscience.

[15]  Yasuaki Inoue,et al.  Path following circuits - SPICE-oriented numerical methods where formulas are described by circuits $ , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[16]  J. Allen,et al.  A parametric study of cochlear input impedance. , 1991, The Journal of the Acoustical Society of America.

[17]  S. Senturia Microsystem Design , 2000 .

[18]  Willard L. Miranker,et al.  Numerical Methods for Stiff Equations and Singular Perturbation Problems , 1980 .

[19]  Stephen J Elliott,et al.  Statistics of instabilities in a state space model of the human cochlea. , 2008, The Journal of the Acoustical Society of America.

[20]  R. L. Wegel,et al.  The Auditory Masking of One Pure Tone by Another and its Probable Relation to the Dynamics of the Inner Ear , 1924 .

[21]  Jack Xin,et al.  A Two-Dimensional Nonlinear Nonlocal Feed-Forward Cochlear Model and Time Domain Computation of Multitone Interactions , 2005, Multiscale Model. Simul..

[22]  Stanley A. Gelfand,et al.  Hearing: An Introduction to Psychological and Physiological Acoustics, Fourth Edition , 1998 .

[23]  Weldon Vlasak Analyzing Atoms Using the Spice Computer Program , 2012, Computing in Science & Engineering.

[24]  Daniele Bertaccini,et al.  Otoacoustic emissions in time-domain solutions of nonlinear non-local cochlear models. , 2009, The Journal of the Acoustical Society of America.

[25]  Daniele Bertaccini,et al.  Different models of the active cochlea, and how to implement them in the state-space formalism. , 2010, The Journal of the Acoustical Society of America.

[26]  A. Basbaum,et al.  The senses : a comprehensive reference , 2008 .

[27]  Rahul Sarpeshkar,et al.  Fast cochlear amplification with slow outer hair cells , 2006, Hearing Research.

[28]  L. Robles,et al.  Basilar-membrane responses to tones at the base of the chinchilla cochlea. , 1997, The Journal of the Acoustical Society of America.

[29]  Renato Nobili,et al.  How well do we understand the cochlea? , 1998, Trends in Neurosciences.

[30]  S. Neely,et al.  Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells. , 2010, The Journal of the Acoustical Society of America.

[31]  Salvatore Iurato,et al.  Functional Implications of the Nature and Submicroscopic Structure of the Tectorial and Basilar Membranes , 1962 .

[32]  Emery M Ku,et al.  A state space model for cochlear mechanics. , 2007, The Journal of the Acoustical Society of America.

[33]  C H Loh,et al.  Multiple scale analysis of the spirally coiled cochlea. , 1983, The Journal of the Acoustical Society of America.

[34]  C. Steele,et al.  Effect of coiling in a cochlear model. , 1985, The Journal of the Acoustical Society of America.

[35]  G. Long,et al.  Modeling otoacoustic emission and hearing threshold fine structures. , 1998, The Journal of the Acoustical Society of America.

[36]  Alfred L Nuttall,et al.  Inverse-solution method for a class of non-classical cochlear models. , 2009, The Journal of the Acoustical Society of America.

[37]  S T Neely,et al.  A model of cochlear mechanics with outer hair cell motility. , 1993, The Journal of the Acoustical Society of America.