New determination of the fine structure constant from the electron value and QED.

Quantum electrodynamics (QED) predicts a relationship between the dimensionless magnetic moment of the electron (g) and the fine structure constant (alpha). A new measurement of g using a one-electron quantum cyclotron, together with a QED calculation involving 891 eighth-order Feynman diagrams, determine alpha(-1)=137.035 999 710 (96) [0.70 ppb]. The uncertainties are 10 times smaller than those of nearest rival methods that include atom-recoil measurements. Comparisons of measured and calculated g test QED most stringently, and set a limit on internal electron structure.

[1]  F. MacKintosh,et al.  Cylindrical Penning traps with orthogonalized anharmonicity compensation , 1984 .

[2]  T. Kinoshita,et al.  Anomalous g values of the electron and muon , 1999 .

[3]  B. Lautrup On High Order Estimates in QED , 1977 .

[4]  G. Gabrielse,et al.  Single-particle self-excited oscillator. , 2005, Physical review letters.

[5]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[6]  Samuel,et al.  Precise mass-ratio dependence of fourth-order lepton anomalous magnetic moments: Effect of a new measurement of m tau. , 1993, Physical review. D, Particles and fields.

[7]  Revised alpha4 term of lepton g-2 from the Feynman diagrams containing an internal light-by-light scattering subdiagram. , 2002, Physical review letters.

[8]  Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment reexamined , 2003, hep-ph/0312226.

[9]  A. Wicht,et al.  A Preliminary Measurement of the Fine Structure Constant Based on Atom Interferometry , 2003 .

[10]  André Clairon,et al.  Optical Frequency Measurement of the 2S-12D Transitions in Hydrogen and Deuterium: Rydberg Constant and Lamb Shift Determinations , 1999 .

[11]  Van Dyck,et al.  New high-precision comparison of electron and positron g factors. , 1987, Physical review letters.

[12]  The muon anomalous magnetic moment in QED: three-loop electron and tau contributions , 1998, hep-ph/9812394.

[13]  Charles M Sommerfield,et al.  The magnetic moment of the electron , 1958 .

[14]  D. Bourilkov Hint for axial-vector contact interactions in the data on e + e − → e + e − ( γ ) at center-of-mass energies 192–208 GeV , 2001 .

[15]  Analytical value of some sixth-order graphs to the electron g-2 in QED. , 1993, Physical review. D, Particles and fields.

[16]  François Nez,et al.  Determination of the fine structure constant based on BLOCH oscillations of ultracold atoms in a vertical optical lattice. , 2006, Physical review letters.

[17]  Vladislav Gerginov,et al.  Optical frequency measurements of 6s 2S1/2-6P 2P1/2 (D1) transitions in 133Cs and their impact on the fine-structure constant , 2006 .

[18]  Samuel,et al.  Improved analytic theory of the muon anomalous magnetic moment. , 1991, Physical review. D, Particles and fields.

[19]  E. Remiddi,et al.  The analytical value of the electron light-light graphs contribution to the muon ( g-2) in QED , 1993 .

[20]  Progress in the analytical evaluation of the electron (g - 2) in QED; the scalar part of the triple-cross graphs , 1995 .

[21]  C. Sommerfield MAGNETIC DIPOLE MOMENT OF THE ELECTRON , 1957 .

[22]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[23]  P. Cvitanović,et al.  Sixth-order magnetic moment of the electron , 1974 .

[24]  Kinoshita New value of the alpha 3 electron anomalous magnetic moment. , 1995, Physical review letters.

[25]  J. Wesley,et al.  The current status of the lepton g factors , 1972 .

[26]  Tan,et al.  Synchronization of parametrically pumped electron oscillators with phase bistability. , 1991, Physical review letters.

[27]  T. Kinoshita Theory of the Anomalous Magnetic Moment of the Electron - Numerical Approach , 1990 .

[28]  Masashi Hayakawa,et al.  Automated calculation scheme for αn contributions of QED to lepton g−2: Generating renormalized amplitudes for diagrams without lepton loops , 2006 .

[29]  S. Brodsky,et al.  Anomalous magnetic moment and limits on fermion substructure , 1980 .

[30]  D. Pritchard,et al.  Penning Trap Measurements of the Masses of C133s, R87,85b, and N23a with Uncertainties ≤0.2 ppb , 1999 .

[31]  G. Lepage A new algorithm for adaptive multidimensional integration , 1978 .

[32]  E. Remiddi,et al.  The analytic value of the light-light vertex graph contributions to the electron g−2 in QED , 1991 .

[33]  E. Remiddi,et al.  The analytical value of the electron (g − 2) at order α3 in QED , 1996 .

[34]  Hartmut Häffner,et al.  New determination of the electron's mass. , 2001, Physical review letters.

[35]  The Tenth-order QED contribution to the lepton g-2: Evaluation of dominant alpha**5 terms of muon g-2 , 2005, hep-ph/0512330.

[36]  G Gabrielse,et al.  New measurement of the electron magnetic moment using a one-electron quantum cyclotron. , 2006, Physical review letters.

[37]  Theodor W. Hänsch,et al.  Absolute Optical Frequency Measurement of the Cesium D 1 Line with a Mode-Locked Laser , 1999 .

[38]  J. Schwinger On Quantum electrodynamics and the magnetic moment of the electron , 1948 .

[39]  The analytical contribution of the sixth-order graphs with vacuum polarization insertions to the muon (g-2) in QED , 1993 .

[40]  Van Dyck,et al.  Determination of the electron's atomic mass and the proton/electron mass ratio via Penning trap mass spectroscopy. , 1995, Physical review letters.

[41]  G. Gabrielse,et al.  Observing the Quantum Limit of an Electron Cyclotron: QND Measurements of Quantum Jumps between Fock States , 1999 .

[42]  Andreas Petermann Fourth order magnetic moment of the electron , 1957 .

[43]  The analytical value of the corner-ladder graphs contribution to the electron (g − 2) in QED , 1995 .

[44]  Improved α 4 term of the electron anomalous magnetic moment , 2005, hep-ph/0507249.

[45]  A. Czarnecki Theory of the muon anomalous magnetic moment , 2003 .