Graph regularized coupled spectral unmixing for change detection

This paper presents a methodology of coupled spectral unmixing for multitemporal hyperspectral data analysis. Coupled spectral unmixing simultaneously extracts the sets of spectral signatures of endmembers and respective abundance maps from multiple spectral images with differences in observation conditions and sensor characteristics. The problem is formulated in the framework of coupled nonnegative matrix factorization. A graph regularization that reflects spectral correlation between two images on abundance fractions is introduced into the optimization of coupled spectral unmixing to consider temporal changes of the earth's surface. An alternating optimization algorithm is investigated using the method of Lagrange multipliers to guarantee a stable convergence. The proposed method was applied to dual-temporal Hyperion images taken over the Fukushima Daiichi nuclear power plant. Experimental results showed that the proposed method can extract essential information on the earth's surface in a data-driven manner beyond multitemporal data modality.

[1]  Antonio J. Plaza,et al.  Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[2]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[3]  José Luis Rojo-Álvarez,et al.  Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Xuelong Li,et al.  Manifold Regularized Sparse NMF for Hyperspectral Unmixing , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Thomas S. Huang,et al.  Graph Regularized Nonnegative Matrix Factorization for Data Representation. , 2011, IEEE transactions on pattern analysis and machine intelligence.

[6]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[7]  Naoto Yokoya,et al.  Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Dengsheng Lu,et al.  Multitemporal spectral mixture analysis for Amazonian land-cover change detection , 2004 .

[9]  Chein-I Chang,et al.  Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..