Simple models for complex nonequilibrium fluids

This review is concerned with the nonequilibrium dynamics and structure of complex fluids based on simple micro- and mesoscopic physical models which are not rigorously solvable by analytic methods. Special emphasis is placed on the finitely extendable nonlinear elastic (FENE) chain models which account for molecular stretch, bending, and topology. More coarse-grained descriptions such as primitive path models, and elongated particle models are reviewed as well. We focus on their inherently anisotropic material-in particular rheological-properties via deterministic and stochastic approaches. A number of representative examples are given on how simple (often high-dimensional) models can, and have been implemented in order to enable the analysis of the microscopic origins of the nonlinear viscoelastic behavior of polymeric materials. These examples are shown to provide us with a number of routes for developing and establishing coarse-grained (low-dimensional) models devoted to the prediction of a reduced number of significant material properties. At this stage approximations which allow for an analytical treatment are discussed as well. Concerning the types of complex fluids, we cover the range from flexible to semiflexible polymers in melts and solutions, wormlike micelles, structural suspensions including ferrofluids in field-induced anisotropic or liquid crystalline phases.

[1]  S. Hess,et al.  On the theory of irreversible processes in molecular liquids and liquid crystals, nonequilibrium phenomena associated with the second and fourth rank alignment tensors , 1980 .

[2]  P. Bisch,et al.  Monte Carlo simulation of a lattice model for micelle formation , 1994 .

[3]  B. Fung,et al.  A simplified approach to molecular dynamics simulations of liquid crystals with atom–atom potentials , 1994 .

[4]  P Español,et al.  Thermodynamically consistent mesoscopic fluid particle model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  S. Hess,et al.  Rheological evidence for a dynamical crossover in polymer melts via nonequilibrium molecular dynamics , 2000, Physical review letters.

[6]  R. Bird,et al.  Constitutive equations for polymeric liquids , 1995 .

[7]  Vincent Legat,et al.  New closure approximations for the kinetic theory of finitely extensible dumbbells 1 Dedicated to th , 1998 .

[8]  A. V. Zakharov,et al.  Rotational viscosity in a nematic liquid crystal: a theoretical treatment and molecular dynamics simulation. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  Patrick Ilg,et al.  Canonical distribution functions in polymer dynamics. (II). Liquid-crystalline polymers , 2003 .

[10]  G. Grest,et al.  Structure function of polymer nematic liquid crystals:mA Monte Carlo simulation , 1995, cond-mat/9512157.

[11]  G. Grest,et al.  Reply to the Comment by A. Wischnewski and D. Richter on , 2000 .

[12]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[13]  Martin Kröger,et al.  Chaotic orientational behavior of a nematic liquid crystal subjected to a steady shear flow. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  R. Larson,et al.  Flow-aligning and tumbling in small-molecule liquid crystals: pure components and mixtures , 1999 .

[15]  Von Anton Peterlin Einflu der endlichen molekllnge auf die gradientenabhngigkeit des staudinger-index , 1961 .

[16]  K. Kremer,et al.  Statistical mechanics of double-stranded semiflexible polymers , 1998 .

[17]  Billy D. Todd,et al.  Computer simulation of simple and complex atomistic fluids by nonequilibrium molecular dynamics techniques , 2001 .

[18]  Relaxation times in transient electric birefringence and electric-field light scattering of flexible polymer chains , 1995 .

[19]  W. Zylka Gaussian approximation and Brownian dynamics simulations for Rouse chains with hydrodynamic interaction undergoing simple shear flow , 1991 .

[20]  S. Hess,et al.  Magnetoviscosity and orientational order parameters of dilute ferrofluids , 2002 .

[21]  PARTIAL DRAINING OF A TETHERED POLYMER IN FLOW , 1999 .

[22]  L. G. Leal,et al.  Computational studies of nonlinear elastic dumbbell models of Boger fluids in a cross-slot flow , 1999 .

[23]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[24]  Ernest H. MacMillan Slow Flows of Anisotropic Fluids , 1989 .

[25]  M. Wagner,et al.  Rheotens‐mastercurves and drawability of polymer melts , 1996 .

[26]  Paul Grassia,et al.  Computer simulations of Brownian motion of complex systems , 1995, Journal of Fluid Mechanics.

[27]  Martin Kröger,et al.  Structure and dynamics of dilute polymer solutions under shear flow via nonequilibrium molecular dynamics , 1999 .

[28]  Do internal viscosity models satisfy the fluctuation-dissipation theorem? , 1992 .

[29]  J. J. Freire,et al.  Characterization of the theta state and transition curves of off‐lattice three dimensional chains , 1995 .

[30]  S. M. Bhattacharjee,et al.  Statistical mechanics of solutions of semiflexible chains: A path integral formulation , 1987 .

[31]  G. Marrucci Prediction of Leslie Coefficients for Rodlike Polymer Nematics , 1982 .

[32]  Sauro Succi,et al.  Colloquium: Role of the H theorem in lattice Boltzmann hydrodynamic simulations , 2002 .

[33]  S. Hess Rheological properties via nonequilibrium molecular dynamics: From simple towards polymeric liquids , 1987 .

[34]  H. Grabert,et al.  Projection Operator Techniques in Nonequilibrium Statistical Mechanics , 1982 .

[35]  Åke Björck,et al.  Numerical Methods , 2021, Markov Renewal and Piecewise Deterministic Processes.

[36]  John F. Brady,et al.  Accelerated Stokesian dynamics: Brownian motion , 2003 .

[37]  George L. Hand,et al.  A theory of anisotropic fluids , 1962, Journal of Fluid Mechanics.

[38]  Jt Johan Padding,et al.  Time and length scales of polymer melts studied by coarse-grained molecular dynamics simulations , 2002 .

[39]  J. Pablo,et al.  On the calculation of transport properties of polymer melts from nonequilibrium molecular dynamics , 1997 .

[40]  G. Batchelor,et al.  The stress generated in a non-dilute suspension of elongated particles by pure straining motion , 1971, Journal of Fluid Mechanics.

[41]  P. Gennes,et al.  The physics of liquid crystals , 1974 .

[42]  Manuel Laso,et al.  Variance reduced Brownian simulation of a bead-spring chain under steady shear flow considering hydrodynamic interaction effects , 2000 .

[43]  Hans Christian Öttinger,et al.  Variance reduced simulations of stochastic differential equations , 1995 .

[44]  W. H. Toliver,et al.  Liquid Crystals , 1912, Nature.

[45]  Francesco Greco,et al.  The Elastic Constants of Maier-Saupe Rodlike Molecule Nematics , 1991 .

[46]  R. Seitz,et al.  Transient behavior of liquid crystalline polymers , 1987 .

[47]  Kroeger,et al.  Wormlike micelles under shear flow: A microscopic model studied by nonequilibrium-molecular-dynamics computer simulations. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[48]  William G. Hoover,et al.  Nonequilibrium molecular dynamics via Gauss's principle of least constraint , 1983 .

[49]  Antony N. Beris,et al.  Direct numerical simulation of viscoelastic turbulent channel flow exhibiting drag reduction: effect of the variation of rheological parameters , 1998 .

[50]  Hans Christian Öttinger,et al.  Variance reduced simulations of polymer dynamics , 1996 .

[51]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[52]  J. Vermant,et al.  Experimental evidence for the existence of a wagging regime in polymeric liquid crystals , 1997 .

[53]  S. Prager,et al.  Variational Treatment of Hydrodynamic Interaction in Polymers , 1969 .

[54]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[55]  H. Fujita,et al.  Flory's Viscosity Factor for the System Polystyrene + Cyclohexane at 34.5 °C , 1980 .

[56]  Patrick Ilg,et al.  Canonical Distribution Functions in Polymer Dynamics: I. Dilute Solutions of Flexible Polymers , 2002 .

[57]  R. Zwanzig Ensemble Method in the Theory of Irreversibility , 1960 .

[58]  James J. Feng,et al.  The shear flow behavior of LCPs based on a generalized Doi model with distortional elasticity , 2002 .

[59]  Bruno H. Zimm,et al.  The Dimensions of Chain Molecules Containing Branches and Rings , 1949 .

[60]  Hans Christian Öttinger,et al.  A detailed comparison of various FENE dumbbell models , 1997 .

[61]  H. C. Öttinger A model of dilute polymer solutions with hydrodynamic interaction and finite extensibility. I. Basic equations and series expansions , 1987 .

[62]  M. Kröger,et al.  A molecular theory for spatially inhomogeneous, concentrated solutions of rod-like liquid crystal polymers , 1993 .

[63]  S. Hess,et al.  Chaotic and regular shear-induced orientational dynamics of nematic liquid crystals , 2002 .

[64]  R. Keunings,et al.  Prediction of chaotic dynamics in sheared liquid crystalline polymers. , 2001, Physical review letters.

[65]  P. Lindner,et al.  Semi-Dilute Polymer Solutions under Shear , 1994 .

[66]  D. Venerus,et al.  Segment connectivity, chain-length breathing, segmental stretch, and constraint release in reptation models. III. Shear flows , 1999 .

[67]  W. Carl Configurational and rheological properties of cyclic polymers , 1995 .

[68]  G. M. Roe,et al.  Solution of a Characteristic Value Problem from the Theory of Chain Molecules , 1956 .

[69]  Molecular Orientation and Deformation of Polymer Solutions under Shear: A Flow Light Scattering Study , 1997 .

[70]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[71]  Travis D. Boone,et al.  End-bridging Monte Carlo: A fast algorithm for atomistic simulation of condensed phases of long polymer chains , 1999 .

[72]  G. Fuller Optical Rheometry of Complex Fluids , 1995 .

[73]  M. Cates,et al.  THE ISOTROPIC-TO-NEMATIC TRANSITION IN SEMI-FLEXIBLE MICELLAR SOLUTIONS , 1994 .

[74]  M. Peterson Analogy between thermodynamics and mechanics , 1979 .

[75]  H. Brand,et al.  Multiplicative stochastic processes in statistical physics , 1979 .

[76]  Allan N. Kaufman,et al.  DISSIPATIVE HAMILTONIAN SYSTEMS: A UNIFYING PRINCIPLE , 1984 .

[77]  D. Bailin Field theory , 1979, Nature.

[78]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[79]  T. Carlsson The Possibility of the Existence of a Positive Leslie Viscosity α2. Proposed Flow Behavior of Disk Like Nematic Liquid Crystals , 1982 .

[80]  Boundary values as Hamiltonian variables. I. New Poisson brackets , 1993, hep-th/9305133.

[81]  C. Elvingson A general Brownian dynamics simulation program for biopolymer dynamics and its implementation on a vector computer , 1990 .

[82]  D. Lévesque,et al.  Monte Carlo study of the thermodynamic stability of the nematic phase of a semiflexible liquid crystal model , 1995 .

[83]  Martin Kröger,et al.  Rheology and structural changes of polymer melts via nonequilibrium molecular dynamics , 1993 .

[84]  M. Schechter,et al.  Eigenvalues for semilinear boundary value problems , 1991 .

[85]  G. Fredrickson The theory of polymer dynamics , 1996 .

[86]  H. C. Öttinger,et al.  On consistency criteria for stress tensors in kinetic theory models , 1994 .

[87]  H. C. Öttinger,et al.  Orientation of Polymer Coils in Dilute Solutions Undergoing Shear Flow: Birefringence Experiments , 1997 .

[88]  Validity of a macroscopic description in dilute polymeric solutions , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[89]  Kurt Kremer,et al.  Molecular dynamics simulation of a polymer chain in solution , 1993 .

[90]  Ehrentraut,et al.  Viscosity coefficients of partially aligned nematic and nematic discotic liquid crystals. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[91]  S. Hess,et al.  An extended FENE dumbbell theory for concentration dependent shear-induced anisotropy in dilute polymer Solutions , 1996 .

[92]  M. Muthukumar,et al.  Expansion of a polymer chain with excluded volume interaction , 1987 .

[93]  K. Skarp,et al.  The Stabilizing Effect of an Electric Field on the Shear Flow of Nematic Liquid Crystals When α3>0: Flow Alignment Regained , 1981 .

[94]  M. Doi,et al.  Molecular dynamics simulation of entangled polymers in shear flow , 2000 .

[95]  Berker,et al.  Smectic-C order, in-plane domains, and nematic reentrance in a microscopic model of liquid crystals. , 1992, Physical review letters.

[96]  S. W. Fetsko,et al.  Simulation of bead-and-spring chain models for semidilute polymer solutions in shear flow , 1994 .

[97]  P. Carreau,et al.  Microscopic and mesoscopic results from non-equilibrium molecular dynamics modeling of FENE dumbbell liquids , 1993 .

[98]  G. R. Luckhurst,et al.  Computer simulation studies of anisotropic systems: XVII. The Gay-Berne model nematogen , 1987 .

[99]  Ronald G. Larson,et al.  Effect of molecular elasticity on out-of-plane orientations in shearing flows of liquid-crystalline polymers , 1991 .

[100]  S. Hess,et al.  Orientational dynamics of nematic liquid crystals under shear flow , 1999 .

[101]  Leon Takhtajan On foundation of the generalized Nambu mechanics , 1993 .

[102]  A. L. T︠S︡ykalo Thermophysical properties of liquid crystals , 1991 .

[103]  F. M. Leslie Some constitutive equations for liquid crystals , 1968 .

[104]  Vlasis G. Mavrantzas,et al.  Crossover from the Rouse to the Entangled Polymer Melt Regime: Signals from Long, Detailed Atomistic Molecular Dynamics Simulations, Supported by Rheological Experiments , 2003 .

[105]  Jerrold E. Marsden,et al.  The Hamiltonian structure for dynamic free boundary problems , 1986 .

[106]  S. Hess Non-newtonian viscosity and normal pressure associated with the flow alignment in macromolecular liquids , 1977 .

[107]  Masayoshi Okubo,et al.  Makromol Chem-Macromol Symp , 1990 .

[108]  S. Hess,et al.  Dynamics of colloidal suspensions of ferromagnetic particles in plane Couette flow: comparison of approximate solutions with Brownian dynamics simulations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[109]  H. C. Öttinger Thermodynamically admissible reptation models with anisotropic tube cross sections and convective constraint release , 2000 .

[110]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[111]  Kurt Kremer,et al.  Vectorized link cell Fortran code for molecular dynamics simulations for a large number of particles , 1989 .

[112]  Iliya V. Karlin,et al.  Perfect entropy functions of the Lattice Boltzmann method , 1999 .

[113]  M. Wagner The origin of the C2 term in rubber elasticitya) , 1994 .

[114]  G. Grest,et al.  Lamellar block copolymers: Diffusion and reduction of entanglement effects , 1998 .

[115]  H. Ch. Öttinger,et al.  Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms , 1995 .

[116]  R. Larson Constitutive equations for polymer melts and solutions , 1988 .

[117]  Roland Keunings,et al.  On the Peterlin approximation for finitely extensible dumbbells , 1997 .

[118]  N. Clark,et al.  Atomic-Detail Simulation Studies of Smectic Liquid Crystals , 1995 .

[119]  G. Thurston,et al.  Influence of Finite Number of Chain Segments, Hydrodynamic Interaction, and Internal Viscosity on Intrinsic Birefringence and Viscosity of Polymer Solutions in an Oscillating Laminar Flow Field , 1967 .

[120]  S. Hess Dynamic viscosity of macromolecular liquids for a superposition of static and oscillating velocity gradients , 1977 .

[121]  K. Kremer,et al.  Nonequilibrium molecular dynamics simulation of shear-induced alignment of amphiphilic model systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[122]  K. Kremer,et al.  Multiscale simulation in polymer science , 2002 .

[123]  Marco Dressler,et al.  Macroscopic thermodynamics of flowing polymeric liquids , 1999 .

[124]  Curtiss,et al.  Dynamics of Polymeric Liquids , .

[125]  Geetha Basappa,et al.  Observation of chaotic dynamics in dilute sheared aqueous solutions of CTAT. , 2000, Physical review letters.

[126]  Victor Martin-Mayor,et al.  Field Theory, the Renormalization Group and Critical Phenomena , 1984 .

[127]  Q. Zhou,et al.  A comparison of FENE and FENE-P dumbbell and chain models in turbulent flow , 2003 .

[128]  F. Bueche,et al.  Viscosity, Self‐Diffusion, and Allied Effects in Solid Polymers , 1952 .

[129]  J. H. Weiner,et al.  Intrinsic atomic-level stresses in polymer melts and networks , 1989 .

[130]  E. J. Hinch,et al.  Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations , 1976, Journal of Fluid Mechanics.

[131]  B. E. Read Viscoelastic behavior of amorphous polymers in the glass‐rubber transition region: Birefringence studies , 1983 .

[132]  R Ezzell,et al.  F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions. , 1996, Biophysical journal.

[133]  S. Hess,et al.  Rheology: From simple and to complex fluids , 1997 .

[134]  E. J. Hinch,et al.  Constitutive equations in suspension mechanics. Part 1. General formulation , 1975, Journal of Fluid Mechanics.

[135]  G. Grest Normal and Shear Forces Between Polymer Brushes , 1999 .

[136]  L. Archer,et al.  A molecular theory of flow alignment and tumbling in sheared nematic liquid crystals , 1995 .

[137]  Hans Christian Öttinger,et al.  Coarse-graining of wormlike polymer chains for substantiating reptation , 2004 .

[138]  F. Greco,et al.  Brownian simulations of a network of reptating primitive chains , 2001 .

[139]  by Arch. Rat. Mech. Anal. , 2022 .

[140]  Manuel Laso,et al.  2-D time-dependent viscoelastic flow calculations using CONNFFESSIT , 1997 .

[141]  E. Moses,et al.  A new apparatus for simultaneous observation of optical microscopy and small-angle light scattering measurements of polymers under shear flow , 1995 .

[142]  J. M. Rallison,et al.  Creeping flow of dilute polymer solutions past cylinders and spheres , 1988 .

[143]  Juan J. de Pablo,et al.  Hydrodynamic interactions in long chain polymers: Application of the Chebyshev polynomial approximation in stochastic simulations , 2000 .

[144]  P. Gennes Reptation of a Polymer Chain in the Presence of Fixed Obstacles , 1971 .

[145]  H. R. Warner,et al.  Kinetic Theory and Rheology of Dilute Suspensions of Finitely Extendible Dumbbells , 1972 .

[146]  H. Hoffmann,et al.  Thinning and thickening effects induced by shearing in lecithin solutions of polymer-like micelles , 2000 .

[147]  Denis Talay,et al.  Functional Integrals: Approximate Evaluation and Applications , 1993 .

[148]  H. Berendsen,et al.  Molecular dynamics simulation of a smectic liquid crystal with atomic detail , 1988 .

[149]  Xijun Fan,et al.  Viscosity, first normal-stress coefficient, and molecular stretching in dilute polymer solutions , 1985 .

[150]  Hans Christian Öttinger,et al.  General projection operator formalism for the dynamics and thermodynamics of complex fluids , 1998 .

[151]  R. Armstrong,et al.  MOLECULAR ORIENTATION EFFECTS IN VISCOELASTICITY , 2003 .

[152]  William M. Gelbart,et al.  The "New" Science of "Complex Fluids" , 1996 .

[153]  M. Fixman Effects of fluctuating hydrodynamic interaction , 1983 .

[154]  M. Tirado,et al.  Monte Carlo study of hydrodynamic properties of flexible linear chains: analysis of several approximate methods , 1984 .

[155]  K. Binder Monte Carlo and molecular dynamics simulations in polymer science , 1995 .

[156]  Y. Rabin,et al.  Renormalization-group calculation of viscometric functions based on conventional polymer kinetic theory , 1989 .

[157]  S. Milner,et al.  Packing Length Influence in Linear Polymer Melts on the Entanglement, Critical, and Reptation Molecular Weights , 1999 .

[158]  J. Kirkwood,et al.  Errata: The Intrinsic Viscosities and Diffusion Constants of Flexible Macromolecules in Solution , 1948 .

[159]  S. Hess Boltzmann equation approach to polymer statistics , 1982 .

[160]  R. D. Groot,et al.  Molecular theory of strain hardening of a polymer gel: Application to gelatin , 1996 .

[161]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[162]  Kurt Kremer,et al.  The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions , 1988 .

[163]  A. Komolkin,et al.  LOCAL STRUCTURE IN ANISOTROPIC SYSTEMS DETERMINED BY MOLECULAR DYNAMICS SIMULATION. APPLICATION TO A NEMATIC LIQUID CRYSTAL , 1995 .

[164]  D Lerche,et al.  The mechanical properties of actin gels. Elastic modulus and filament motions. , 1994, The Journal of biological chemistry.

[165]  M. Kröger,et al.  Magnetization dynamics, rheology, and an effective description of ferromagnetic units in dilute suspension. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[166]  J. Grabowski,et al.  REMARKS ON NAMBU-POISSON AND NAMBU-JACOBI BRACKETS , 1999, math/9902128.

[167]  M. Kröger,et al.  Viscosity coefficients for anisotropic, nematic fluids based on structural theories of suspensions , 1995 .

[168]  P. Goldbart,et al.  Theory of the nonequilibrium phase transition for nematic liquid crystals under shear flow. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[169]  S. Lee The Leslie coefficients for a polymer nematic liquid crystal , 1988 .

[170]  J. Springer,et al.  Light scattering from dilute polymer solutions in shear flow , 1993 .

[171]  H. C. Öttinger Generalized Zimm model for dilute polymer solutions under theta conditions , 1987 .

[172]  Radial Distribution Function of Semiflexible Polymers. , 1996, Physical review letters.

[173]  R. Larson,et al.  A Molecular Theory for Fast Flows of Entangled Polymers , 1998 .

[174]  G. V. Paolini,et al.  Simulation of site-site soft-core liquid crystal models , 1993 .

[175]  Milchev,et al.  Monte Carlo study of living polymers with the bond-fluctuation method. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[176]  H J Berendsen,et al.  Bio-Molecular Dynamics Comes of Age , 1996, Science.

[177]  R. Makhloufi,et al.  Rheo-Optical Study of Worm-like Micelles Undergoing a Shear Banding Flow , 1995 .

[178]  Gottfried Jetschke Stochastische dynamische Systeme , 1989 .

[179]  Daniel N. Ostrov,et al.  A finitely extensible bead-spring chain model for dilute polymer solutions , 1991 .

[180]  C. Tanford Macromolecules , 1994, Nature.

[181]  Faraday Discuss , 1985 .

[182]  Tamar Schlick,et al.  Macroscopic modeling and simulations of supercoiled DNA with bound proteins , 2002 .

[183]  So,et al.  Simulating shear flow , 1996 .

[184]  M. Duits,et al.  A new transient network model for associative polymer networks , 1999 .

[185]  H. D. Cochran,et al.  Comparison of shear flow of hexadecane in a confined geometry and in bulk , 1997 .

[186]  S. Glotzer,et al.  Molecular and Mesoscale Simulation Methods for Polymer Materials , 2002 .

[187]  A. Gast,et al.  Dynamic simulation of freely draining flexible polymers in steady linear flows , 1997, Journal of Fluid Mechanics.

[188]  W. Selke,et al.  Monte Carlo and molecular dynamics of condensed matter systems , 1997 .

[189]  J. Ryckaert,et al.  Deformation and Orientation of Flexible Polymers in Solution under Shear Flow: A New Picture for Intermediate Reduced Shear Rates , 1995 .

[190]  Kurt Kremer,et al.  From many monomers to many polymers: Soft ellipsoid model for polymer melts and mixtures , 1998 .

[191]  Vincent Legat,et al.  The FENE-L and FENE-LS closure approximations to the kinetic theory of finitely extensible dumbbells , 1999 .

[192]  B. Cherayil,et al.  Semiflexible random A–B block copolymers under tension , 2003 .

[193]  D. Venerus,et al.  Normal stress relaxation in reversing double‐step strain flowsa) , 1994 .

[194]  Manfred Schmidt,et al.  Translational diffusion and hydrodynamic radius of unperturbed flexible chains , 1981 .

[195]  M. Huggins Viscoelastic Properties of Polymers. , 1961 .

[196]  Martin Kröger,et al.  Symbolic test of the Jacobi identity for given generalized ‘Poisson’ bracket , 2001 .

[197]  Kurt Kremer,et al.  Kinetics and relaxation of end crosslinked polymer networks , 1993 .

[198]  H. C. Öttinger,et al.  A model of dilute polymer solutions with hydrodynamic interaction and finite extensibility. II. Shear flows , 1988 .

[199]  A. Haymet,et al.  Nematic liquid crystals: A Monte Carlo simulation study in higher dimensions , 1989 .

[200]  Luis F. Rull,et al.  Observation, prediction and simulation of phase transitions in complex fluids , 1995 .

[201]  Deformation of fluctuating chiral ribbons , 2002 .

[202]  F. Bretherton The motion of rigid particles in a shear flow at low Reynolds number , 1962, Journal of Fluid Mechanics.

[203]  Kroeger,et al.  Molecular dynamics of model liquid crystals composed of semiflexible molecules. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[204]  Micro/mesoscopic approaches to the ring formation in linear wormlike micellar systems , 1998 .

[205]  Kurt Binder,et al.  Applications of Monte Carlo methods to statistical physics , 1997 .

[206]  B. Brulé Browian dynamics simulation of finitely extensible bead-spring chains , 1993 .

[207]  W. Gelbart,et al.  Monte Carlo and mean‐field studies of phase evolution in concentrated surfactant solutions , 1995 .

[208]  M. Kröger,et al.  FOKKER-PLANCK CALCULATIONS OF THE VISCOSITIES OF BIAXIAL FLUIDS , 1997 .

[209]  Cédric Chauvière,et al.  Fokker-Planck simulations of fast flows of melts and concentrated polymer solutions in complex geometries , 2003 .

[210]  J. Ryckaert,et al.  Liquid chlorine in shear and elongational flows: A nonequilibrium molecular dynamics study , 1992 .

[211]  W. Gelbart,et al.  Flow effects on micellar size distribution , 1990 .

[212]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[213]  L. Duysens Preprints , 1966, Nature.

[214]  A. Booth Numerical Methods , 1957, Nature.

[215]  M. Doi Explanation for the 3.4-power law for viscosity of polymeric liquids on the basis of the tube model , 1983 .

[216]  J. H. Weiner,et al.  Monomer-Level Description of Stress and Birefringence Relaxation in Polymer Melts , 1994 .

[217]  P. Goldbart,et al.  Isotropic-nematic transition in shear flow: State selection, coexistence, phase transitions, and critical behavior. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[218]  Martin Kröger,et al.  A thermodynamically admissible reptation model for fast flows of entangled polymers. II. Model predictions for shear and extensional flows , 2000 .

[219]  M.A. Hulsen,et al.  Thermodynamics of viscoelastic fluids: the temperature equation , 1998 .

[220]  A. Akcasu,et al.  Molecular Weight and Temperature Dependence of Polymer Dimensions in Solution , 1979 .

[221]  H. C. Booij The energy storage in the Rouse model in an arbitrary flow field , 1984 .

[222]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[223]  D. Pine,et al.  Inhomogeneous structure formation and shear-thickening in worm-like micellar solutions , 1997 .

[224]  D. Frenkel,et al.  On the anisotropy of diffusion in nematic liquid crystals: test of a modified affine transformation model via molecular dynamics , 1991 .

[225]  Brownian dynamics simulation of model polymer fluids in shear flow. I: Dumbbell models , 1992 .

[226]  W. H. Jeu,et al.  Thermotropic Liquid Crystals, Fundamentals , 1988 .

[227]  A. Tsykalo The Study of the Structure and Properties of Nematic, Smectic and Cholesteric Liquid Crystals by the Molecular Dynamics Method , 1985 .

[228]  Corrections to scaling in the hydrodynamic properties of dilute polymer solutions , 2002, cond-mat/0203473.

[229]  Nobuhiko Saitô,et al.  The Statistical Mechanical Theory of Stiff Chains , 1967 .

[230]  K. Binder,et al.  Structural aspects of a three-dimensional lattice model for the glass transition of polymer melts: a Monte Carlo simulation , 1994 .

[231]  R. Balian From microphysics to macrophysics , 1991 .

[232]  K. Schulten,et al.  Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid crystal phase , 1993 .

[233]  M. Muthukumar,et al.  Perturbation theory for a polymer chain with excluded volume interaction , 1984 .

[234]  Klein,et al.  Characterization of structural and dynamical behavior in monolayers of long-chain molecules using molecular-dynamics calculations. , 1988, Physical review letters.

[235]  Y.‐H. Lin,et al.  Brownian dynamics simulations of the effects of hydrodynamic interactions on the polymer viscoelastic behavior , 2003 .

[236]  G. Marrucci,et al.  Stress tensor and stress-optical law in entangled polymers 1 Dedicated to Professor Marcel J. Croche , 1998 .

[237]  A. Ravve,et al.  Principles of Polymer Chemistry , 1995 .

[238]  B. Edwards,et al.  Out‐of‐plane orientational dynamics of polymer liquid crystals under flow , 1996 .

[239]  Ryckaert,et al.  Scaling analysis for a chain molecule in shear flow by molecular dynamics simulation. , 1993, Physical review letters.

[240]  Dynamical Monte Carlo study of equilibrium polymers: Static properties , 1998, cond-mat/9805263.

[241]  Oettinger Renormalization-group calculation of excluded-volume effects on the viscometric functions for dilute polymer solutions. , 1989, Physical review. A, General physics.

[242]  Scott T. Milner,et al.  Polymers grafted to a convex surface , 1991 .

[243]  R. E. PEIERLS,et al.  Lectures on Theoretical Physics , 1951, Nature.

[244]  Emanuele Paci,et al.  Constant-Pressure Molecular Dynamics Techniques Applied to Complex Molecular Systems and Solvated Proteins , 1996 .

[245]  Peter V. Coveney,et al.  From Molecular Dynamics to Dissipative Particle Dynamics , 1999 .

[246]  A finitely extensible network strand model with nonlinear backbone forces and entanglement kinetics , 1997 .

[247]  Jerrold E. Marsden,et al.  The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems , 1997 .

[248]  S. Nakajima On Quantum Theory of Transport Phenomena Steady Diffusion , 1958 .

[249]  Vlasis G. Mavrantzas,et al.  Atomistic Monte Carlo Simulations of Polymer Melt Elasticity: Their Nonequilibrium Thermodynamics GENERIC Formulation in a Generalized Canonical Ensemble , 2002 .

[250]  L. G. Leal,et al.  Computational studies of the FENE-CR model in a two-roll mill , 2000 .

[251]  Martin Kröger,et al.  Projection from an atomistic chain contour to its primitive path , 2002 .

[252]  Martin Kröger,et al.  Efficient hybrid algorithm for the dynamic creation of wormlike chains in solutions, brushes, melts and glasses , 1999 .

[253]  Brian J. Edwards,et al.  Thermodynamics of flowing systems : with internal microstructure , 1994 .

[254]  J. Noolandi,et al.  Stiff chain model—functional integral approach , 1991 .

[255]  Gareth H. McKinley,et al.  Relaxation of dilute polymer solutions following extensional flow 1 Dedicated to the memory of Profe , 1998 .

[256]  O. Gottlieb,et al.  Chaotic rotation of triaxial ellipsoids in simple shear flow , 1997, Journal of Fluid Mechanics.

[257]  Y. Tsunashima Polymer chain dynamics in dilute solutions under Couette flow: Dynamic light scattering from polystyrenes in a good solvent , 1995 .

[258]  A. N. Gorban,et al.  Constructive methods of invariant manifolds for kinetic problems , 2003 .

[259]  D Roux,et al.  Oscillating viscosity in a lyotropic lamellar phase under shear flow. , 2001, Physical review letters.

[260]  H. C. Öttinger,et al.  Orientation of Polymer Coils in Dilute Solutions Undergoing Shear Flow: Birefringence and Light Scattering , 1995 .

[261]  H. Janeschitz-Kriegl Polymer Melt Rheology and Flow Birefringence , 1982 .

[262]  K. Wilson The renormalization group and critical phenomena , 1983 .

[263]  Hans Christian Öttinger,et al.  A thermodynamically admissible reptation model for fast flows of entangled polymers , 1999 .

[264]  E. Sackmann,et al.  Direct imaging of reptation for semiflexible actin filaments , 1994, Nature.

[265]  R. Ball,et al.  Confirmation of the Doi-Edwards model , 1992 .

[266]  Kurt Kremer,et al.  Computer simulations for macromolecular science , 2003 .

[267]  Kurt Kremer,et al.  Reply to the Comment on: “What is the Entanglement Length in a Polymer Melt ?“ , 2000 .

[268]  Banavar,et al.  Molecular simulations of dewetting , 1999, Physical review letters.

[269]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[270]  M. Kröger,et al.  Polymer Melts under Uniaxial Elongational Flow: Stress−Optical Behavior from Experiments and Nonequilibrium Molecular Dynamics Computer Simulations , 1997 .

[271]  T. Matsuoka,et al.  Viscosity of dilute suspensions of rodlike particles: A numerical simulation method , 1994 .

[272]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism , 1997 .

[273]  J. D. Cloizeaux,et al.  Lagrangian theory for a self-avoiding random chain , 1974 .

[274]  D. Venerus,et al.  Segment connectivity, chain-length breathing, segmental stretch, and constraint release in reptation models. II. Double-step strain predictions , 1998 .

[275]  Goldenfeld,et al.  Simple lessons from complexity , 1999, Science.

[276]  R.J.J. Jongschaap The matrix model, a driven state variables approach to non-equilibrium thermodynamics , 2001 .

[277]  S. Hess,et al.  Viscoelasticity of polymeric melts and concentrated solutions. The effect of flow-induced alignment of chain ends , 1993 .

[278]  H. C. Öttinger,et al.  Time-structure invariance criteria for closure approximations , 1997 .

[279]  Masao Doi,et al.  Constitutive Equation for Nematic Liquid Crystals under Weak Velocity Gradient Derived from a Molecular Kinetic Equation , 1983 .

[280]  Patrick Ilg,et al.  Corrections and Enhancements of Quasi-Equilibrium States , 2001 .

[281]  Kremer,et al.  Crossover from Rouse to reptation dynamics: A molecular-dynamics simulation. , 1988, Physical review letters.

[282]  J. Schieber,et al.  A full-chain, temporary network model with sliplinks, chain-length fluctuations, chain connectivity and chain stretching , 2003 .