Interactive Regression Lens for Exploring Scatter Plots

Data analysis often involves finding models that can explain patterns in data, and reduce possibly large data sets to more compact model‐based representations. In Statistics, many methods are available to compute model information. Among others, regression models are widely used to explain data. However, regression analysis typically searches for the best model based on the global distribution of data. On the other hand, a data set may be partitioned into subsets, each requiring individual models. While automatic data subsetting methods exist, these often require parameters or domain knowledge to work with. We propose a system for visual‐interactive regression analysis for scatter plot data, supporting both global and local regression modeling. We introduce a novel regression lens concept, allowing a user to interactively select a portion of data, on which regression analysis is run in interactive time. The lens gives encompassing visual feedback on the quality of candidate models as it is interactively navigated across the input data. While our regression lens can be used for fully interactive modeling, we also provide user guidance suggesting appropriate models and data subsets, by means of regression quality scores. We show, by means of use cases, that our regression lens is an effective tool for user‐driven regression modeling and supports model understanding.

[1]  Daniel A. Keim,et al.  Guiding the Exploration of Scatter Plot Data Using Motif-Based Interest Measures , 2015, 2015 Big Data Visual Analytics (BDVA).

[2]  Georges G. Grinstein,et al.  DNA visual and analytic data mining , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[3]  Alan J. Dix,et al.  The sampling lens: making sense of saturated visualisations , 2005, CHI Extended Abstracts.

[4]  Heidrun Schumann,et al.  A Survey on Interactive Lenses in Visualization , 2014, EuroVis.

[5]  Christopher Rao,et al.  Graphs in Statistical Analysis , 2010 .

[6]  Klaus Mueller,et al.  The magic volume lens: an interactive focus+context technique for volume rendering , 2005, VIS 05. IEEE Visualization, 2005..

[7]  F. J. Anscombe,et al.  Graphs in Statistical Analysis , 1973 .

[8]  Bernd Hamann,et al.  A magnification lens for interactive volume visualization , 2001, Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001.

[9]  Heidrun Schumann,et al.  Stacking-Based Visualization of Trajectory Attribute Data , 2012, IEEE Transactions on Visualization and Computer Graphics.

[10]  Olga Stepánková,et al.  Visualization of trends using RadViz , 2011, Journal of Intelligent Information Systems.

[11]  Matthew O. Ward,et al.  Model space visualization for multivariate linear trend discovery , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[12]  Clara Pizzuti,et al.  Fast Outlier Detection in High Dimensional Spaces , 2002, PKDD.

[13]  A K Wagner,et al.  Segmented regression analysis of interrupted time series studies in medication use research , 2002, Journal of clinical pharmacy and therapeutics.

[14]  Eser Kandogan,et al.  Visualizing multi-dimensional clusters, trends, and outliers using star coordinates , 2001, KDD '01.

[15]  Maurizio Rigamonti,et al.  Extended Excentric Labeling , 2009, Comput. Graph. Forum.

[16]  Jing Li,et al.  Judging Correlation from Scatterplots and Parallel Coordinate Plots , 2010, Inf. Vis..

[17]  R. Grossman,et al.  Graph-theoretic scagnostics , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[18]  Cynthia A. Brewer,et al.  ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps , 2003 .

[19]  Matthew O. Ward,et al.  Interaction spaces in data and information visualization , 2004, VISSYM'04.

[20]  Kwan-Liu Ma,et al.  Flow-based scatterplots for sensitivity analysis , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[21]  Thomas Ertl,et al.  SemLens: visual analysis of semantic data with scatter plots and semantic lenses , 2011, I-Semantics '11.

[22]  Christophe Hurter,et al.  MoleView: An Attribute and Structure-Based Semantic Lens for Large Element-Based Plots , 2011, IEEE Transactions on Visualization and Computer Graphics.

[23]  Andreas Kerren,et al.  The Network Lens: Interactive Exploration of Multivariate Networks Using Visual Filtering , 2010, 2010 14th International Conference Information Visualisation.

[24]  Lenka Nováková,et al.  Multidimensional clusters in RadViz , 2006 .

[25]  Mark D. Apperley,et al.  A review and taxonomy of distortion-oriented presentation techniques , 1994, TCHI.

[26]  Daniel A. Keim,et al.  Guided Sketching for Visual Search and Exploration in Large Scatter Plot Spaces , 2014, EuroVA@EuroVis.

[27]  Tony DeRose,et al.  Toolglass and magic lenses: the see-through interface , 1993, SIGGRAPH.

[28]  Kun Zhou,et al.  Visual Abstraction and Exploration of Multi-class Scatterplots , 2014, IEEE Transactions on Visualization and Computer Graphics.

[29]  Daniel B. Carr,et al.  Scatterplot matrix techniques for large N , 1986 .

[30]  Tobias Schreck,et al.  Retrieval and exploratory search in multivariate research data repositories using regressional features , 2011, JCDL '11.

[31]  Richard A. Becker,et al.  Brushing scatterplots , 1987 .

[32]  Harald Piringer,et al.  A Partition-Based Framework for Building and Validating Regression Models , 2013, IEEE Transactions on Visualization and Computer Graphics.

[33]  David A. Freedman,et al.  Statistical Models: Theory and Practice: References , 2005 .

[34]  Dirk J. Lehmann,et al.  General Projective Maps for Multidimensional Data Projection , 2016, Comput. Graph. Forum.

[35]  Dirk J. Lehmann,et al.  Visualnostics: Visual Guidance Pictograms for Analyzing Projections of High‐dimensional Data , 2015, Comput. Graph. Forum.

[36]  Michael Gleicher,et al.  Splatterplots: Overcoming Overdraw in Scatter Plots , 2013, IEEE Transactions on Visualization and Computer Graphics.