Protein Structure Analysis

The SCOP database aims to provide a detailed and comprehensive description of the structural and evolutionary relationships between all proteins whose structure is known. Proteins are classified to reflect both structural and evolutionary relatedness. Many levels exist in the hierarchy; the principal levels are family, superfamily and fold Family: Clear evolutionarily relationship Superfamily: Probable common evolutionary origin Fold: Major structural similarity SCOP: Structural Classification of Proteins

[1]  R. Aebersold,et al.  Sequence analysis of proteins separated by polyacrylamide gel electrophoresis: Towards an integrated protein database , 1990, Electrophoresis.

[2]  E. Fleck,et al.  Characterization of myocardial protein composition in dilated cardiomyopathy by two-dimensional gel electrophoresis. , 1994, European heart journal.

[3]  P. E. Hare,et al.  Separation of D and L amino acids by liquid chromatography: use of chiral eluants. , 1979, Science.

[4]  A. Magee,et al.  Lipid modification of proteins and its relevance to protein targeting. , 1990, Journal of cell science.

[5]  J. Klose,et al.  Identification of tissue proteins by amino acid analysis after purification by two-dimensional electrophoresis , 1992, Journal of protein chemistry.

[6]  M. Moos,et al.  Reproducible high yield sequencing of proteins electrophoretically separated and transferred to an inert support. , 1988, The Journal of biological chemistry.

[7]  R. Seifert,et al.  Analysis by high-resolution two-dimensional electrophoresis of differentiation-dependent alterations in cytosolic protein pattern of HL-60 leukemic cells. , 1990, Journal of biochemical and biophysical methods.

[8]  P. Roepstorff,et al.  Proposal for a common nomenclature for sequence ions in mass spectra of peptides. , 1984, Biomedical mass spectrometry.

[9]  L. Hood,et al.  Covalent attachment of peptides for high sensitivity solid-phase sequence analysis. , 1990, Analytical Biochemistry.

[10]  Sung-Hou Kim,et al.  Sparse matrix sampling: a screening method for crystallization of proteins , 1991 .

[11]  S. Martin,et al.  Site-specific carbohydrate identification in recombinant proteins using MALD-TOF MS. , 1993, Analytical chemistry.

[12]  S. Ebashi,et al.  Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. , 1984, Journal of biochemistry.

[13]  S. Šibalić,et al.  [Determination of amino acids]. , 1951, Higijena; casopis za higijenu, mikrobiologiju, epidemiologiju i sanitarnu tehniku.

[14]  Choh Hao Li,et al.  Amino-Acid Sequence of Alpha-Corticotropin , 1955, Nature.

[15]  R. Krishna,et al.  N-terminal sequence analysis of N alpha-acetylated proteins after unblocking with N-acylaminoacyl-peptide hydrolase. , 1991, Analytical biochemistry.

[16]  Bernhard Spengler,et al.  Metastable decay of peptides and proteins in matrix‐assisted laser‐desorption mass spectrometry , 1991 .

[17]  G L Gilliland,et al.  Biological Macromolecule Crystallization Database, Version 3.0: new features, data and the NASA archive for protein crystal growth data. , 1994, Acta crystallographica. Section D, Biological crystallography.

[18]  P. Edman,et al.  A protein sequenator. , 1967, European journal of biochemistry.

[19]  F. Lottspeich,et al.  Structural characterization of blotting membranes and the influence of membrane parameters for electroblotting and subsequent amino acid sequence analysis of proteins , 1993, Electrophoresis.

[20]  Eckart Fleck,et al.  Protein composition of the human heart: The construction of a myocardial two‐dimensional electrophoresis database , 1994, Electrophoresis.

[21]  B. Wittmann-Liebold,et al.  Extended N-terminal sequencing of proteins of archaebacterial ribosomes blotted from two-dimensional gels onto glass fiber and poly(vinylidene difluoride) membrane. , 1988, Biochemistry.

[22]  M. Roth Fluorescence reaction for amino acids. , 1971, Analytical chemistry.

[23]  D. Goeddel,et al.  Comparative biochemical properties of normal and activated human ras p21 protein , 1984, Nature.

[24]  D. Wessel,et al.  A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. , 1984, Analytical biochemistry.

[25]  F. Lottspeich,et al.  Combination of two‐dimensional gel electrophoresis with microsequencing and amino acid composition analysis: Improvement of speed and sensitivity in protein characterization , 1990, Electrophoresis.

[26]  W. Gray Disulfide structures of highly bridged peptides: A new strategy for analysis , 1993, Protein science : a publication of the Protein Society.

[27]  J. Kyhse-Andersen Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. , 1984, Journal of biochemical and biophysical methods.

[28]  H. Wittmann,et al.  Ribosomal proteins. VII. Two-dimensional polyacrylamide gel electrophoresis for fingerprinting of ribosomal proteins. , 1970, Analytical biochemistry.

[29]  S. Raymond ACRYLAMIDE GEL ELECTROPHORESIS , 1964, Annals of the New York Academy of Sciences.

[30]  E. Swiezewska [Prenylation of proteins]. , 1995, Postepy biochemii.

[31]  R. Laursen Solid-phase Edman degradation. An automatic peptide sequencer. , 1971, European journal of biochemistry.

[32]  F. Šorm,et al.  DISULPHIDE BRIDGES AND A SUGGESTED STRUCTURE OF CHYMOTRYPSINOGEN. , 1963, Biochimica et biophysica acta.

[33]  A. Shevchenko,et al.  Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry , 1996, Nature.

[34]  C. Bugg The future of protein crystal growth , 1986 .

[35]  K. Breddam Serine carboxypeptidases. A review , 1986 .

[36]  F Hillenkamp,et al.  Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. , 1991, Analytical chemistry.

[37]  T. Egorov Use of Thiopropyl-Sepharose 6B for Isolation and Structure-Functional Analysis of Thiol Proteins , 1991 .

[38]  M. Wilm,et al.  Error-tolerant identification of peptides in sequence databases by peptide sequence tags. , 1994, Analytical chemistry.

[39]  R. Montelaro,et al.  Reversible staining and peptide mapping of proteins transferred to nitrocellulose after separation by sodium dodecylsulfate-polyacrylamide gel electrophoresis. , 1986, Analytical biochemistry.

[40]  J. Chang Manual solid phase sequence analysis of polypeptides using 4-N-N,-dimethylaminoazobenzene 4'-isothiocyanate. , 1979, Biochimica et biophysica acta.

[41]  J. Harris,et al.  Amino-acid Sequence of a Melanophore-stimulating Peptide , 1956, Nature.

[42]  F. Lottspeich,et al.  A new siliconized-glass fiber as support for protein-chemical analysis of electroblotted proteins. , 1988, European journal of biochemistry.

[43]  C. Betzel,et al.  Protein microheterogeneity and crystal habits: the case of epidermal growth factor receptor isoforms as isolated in a multicompartment electrolyzer with isoelectric membranes. , 1994, Journal of chromatography. A.

[44]  J. Hulmes,et al.  Selective cleavage of polypeptides with trifluoroacetic acid: applications for microsequencing. , 1991, Analytical biochemistry.

[45]  C. Wilkins,et al.  Matrix-assisted laser desorption/ionization of high-mass molecules by Fourier-transform mass spectrometry. , 1992, Rapid communications in mass spectrometry : RCM.

[46]  G. Scheele,et al.  Two-dimensional gel analysis of soluble proteins. Charaterization of guinea pig exocrine pancreatic proteins. , 1975, The Journal of biological chemistry.

[47]  C R Merril,et al.  Trace polypeptides in cellular extracts and human body fluids detected by two-dimensional electrophoresis and a highly sensitive silver stain. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[48]  L. Vuillard,et al.  Silver-staining of proteins in polyacrylamide gels: a general overview. , 1994, Cellular and molecular biology.

[49]  W. K. Roberts,et al.  Evidence that approximately eighty per cent of the soluble proteins from Ehrlich ascites cells are Nalpha-acetylated. , 1976, The Journal of biological chemistry.

[50]  J. Klose,et al.  Composition and genetic variability of proteins from nuclear fractions of mouse (DBA/2J and C57BL/6J) liver and brain , 1989, Electrophoresis.

[51]  R. S. Brown,et al.  Sequence-specific fragmentation of matrix-assisted laser-desorbed protein/peptide ions. , 1995, Analytical chemistry.

[52]  R. Laursen,et al.  Covalent immobilization of proteins and peptides for solid-phase sequencing using prepacked capillary columns. , 1990, Analytical biochemistry.

[53]  L. Hood,et al.  A gas-liquid solid phase peptide and protein sequenator. , 1981, The Journal of biological chemistry.

[54]  M. Van Montagu,et al.  Protein-blotting on Polybrene-coated glass-fiber sheets. A basis for acid hydrolysis and gas-phase sequencing of picomole quantities of protein previously separated on sodium dodecyl sulfate/polyacrylamide gel. , 1985, European journal of biochemistry.

[55]  P. Roepstorff,et al.  The complete amino acid sequence and disulphide bond arrangement of oat alcohol-soluble avenin-3. , 1994, European journal of biochemistry.

[56]  R. Huber,et al.  Expression of alpha 1-proteinase inhibitor in Escherichia coli: effects of single amino acid substitutions in the active site loop on aggregate formation. , 1994, Journal of biotechnology.

[57]  H. Brückner,et al.  Liquid chromatographic determination of D-amino acids in cheese and cow milk. Implication of starter cultures, amino acid racemases, and rumen microorganisms on formation, and nutritional considerations , 1992, Amino Acids.

[58]  L. Hood,et al.  Electroblotting onto activated glass. High efficiency preparation of proteins from analytical sodium dodecyl sulfate-polyacrylamide gels for direct sequence analysis. , 1986, The Journal of biological chemistry.

[59]  M. Ikeuchi,et al.  A new photosystem II reaction center component (4.8 kDa protein) encoded by chloroplast genome , 1988, FEBS letters.

[60]  P. K. Smith,et al.  Fragmentation of proteins with o-iodosobenzoic acid: chemical mechanism and identification of o-iodoxybenzoic acid as a reactive contaminant that modifies tyrosyl residues. , 1981, Biochemistry.

[61]  G. Feher,et al.  Nucleation and growth of protein crystals: general principles and assays. , 1985, Methods in enzymology.

[62]  J. Langowski,et al.  Optimizing protein crystallization by aggregate size distribution analysis using dynamic light scattering , 1992 .

[63]  A. Tsugita,et al.  Removal of N-terminal formyl groups and deblocking of pyrrolidone carboxylic acid of proteins with anhydrous hydrazine vapor. , 1993, European journal of biochemistry.

[64]  P. Højrup,et al.  Rapid identification of proteins by peptide-mass fingerprinting , 1993, Current Biology.

[65]  E. Müller,et al.  Identification of human myocardial proteins separated by two‐dimensional electrophoresis with matrix‐assisted laser desorption/ionization mass spectrometry , 1996, Electrophoresis.

[66]  P. Højrup,et al.  A General Strategy for the use of Mass Spectrometric Molecular Weight Information in Protein Purification and Sequence Determination , 1993 .

[67]  R. Canfield PEPTIDES DERIVED FROM TRYPTIC DIGESTION OF EGG WHITE LYSOZYME. , 1963, The Journal of biological chemistry.

[68]  J. Clegg,et al.  Glycoprotein detection in nitrocellulose transfers of electrophoretically separated protein mixtures using concanavalin A and peroxidase: application to arenavirus and flavivirus proteins. , 1982, Analytical biochemistry.

[69]  W. Brandt,et al.  Derivatization of polyvinylidene difluoride membranes for the solid-phase sequence analysis of a phosphorylated sea urchin embryo histone H1 peptide. , 1994, Analytical biochemistry.

[70]  K. Biemann,et al.  Characterization by tandem mass spectrometry of structural modifications in proteins. , 1987, Science.

[71]  P. Pfaffle,et al.  Single-step purification of a thermostable DNA polymerase expressed in Escherichia coli. , 1995, BioTechniques.

[72]  H. Towbin,et al.  Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[73]  W. Lindner Indirect Separation of Enantiomers by Liquid Chromatography , 1988 .

[74]  D. Blow,et al.  An Automated System for Micro-Batch Protein Crystallization and Screening , 1990 .

[75]  H. Francksen,et al.  Potato Proteins: Genetic and Physiological Changes, Evaluated by One-and Two-dimensional PAA-Gel-techniques , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[76]  Arnaud Ducruix,et al.  Crystallization of Nucleic Acids and Proteins: A practical Approach , 1998 .

[77]  J. Klose,et al.  Genetic variability of proteins from mitochondria and mitochondrial fractions of mouse organs , 1985, Biochemical Genetics.

[78]  S. Moore,et al.  Determination of D- and L-amino acids by ion exchange chromatography as L-D and L-L dipeptides. , 1968, The Journal of biological chemistry.

[79]  J R Yates,et al.  Protein sequencing by tandem mass spectrometry. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[80]  C. Watanabe,et al.  Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[81]  U. Hellman,et al.  Improvement of an "In-Gel" digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. , 1995, Analytical biochemistry.

[82]  B. Wittmann-Liebold,et al.  Improved automated solid-phase microsequencing of peptides using DABITC. , 1981, Analytical biochemistry.

[83]  R. Dernick,et al.  Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining , 1985 .

[84]  F. Lottspeich,et al.  Blotting efficiency investigated by using two‐dimensional electrophoresis, hydrophobic membranes and proteins from different sources , 1990, Electrophoresis.

[85]  N. Morita,et al.  Applications of an automated apparatus for two‐dimensional electrophoresis, Model TEP‐1, for microsequence analyses of proteins , 1992, Electrophoresis.

[86]  J Allison,et al.  An approach to locate phosphorylation sites in a phosphoprotein: mass mapping by combining specific enzymatic degradation with matrix-assisted laser desorption/ionization mass spectrometry. , 1994, Analytical biochemistry.

[87]  K. Ashman The Use of On-Line High Performance Liquid Chromatography for Phenylthiohydantoin Amino-Acid Identification , 1986 .

[88]  B. Wittmann-Liebold,et al.  Purification of Escherichia coli 50 S ribosomal proteins by high performance liquid chromatography , 1984, FEBS letters.

[89]  Joachim Klose,et al.  Two‐dimensional electrophoresis of proteins: An updated protocol and implications for a functional analysis of the genome , 1995, Electrophoresis.

[90]  P. Højrup,et al.  Use of mass spectrometric molecular weight information to identify proteins in sequence databases. , 1993, Biological mass spectrometry.

[91]  C. L. Zimmerman,et al.  Rapid analysis of amino acid phenylthiohydantoins by high-performance liquid chromatography. , 1977, Analytical biochemistry.

[92]  S. Moore,et al.  The sequence of amino acid residues in bovine pancreatic ribonuclease: revisions and confirmations. , 1963, The Journal of biological chemistry.

[93]  H. Kohls,et al.  A device coupled to a modified sequenator for the automated conversion of anilinothiazolinones into PTH amino acids. , 1976, Analytical biochemistry.

[94]  P. Matsudaira,et al.  Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. , 1987, The Journal of biological chemistry.

[95]  A. Yonath,et al.  Aspects in structural studies on ribosomes. , 1992, Critical reviews in biochemistry and molecular biology.

[96]  Peter Roepstorff,et al.  Improved resolution and very high sensitivity in MALDI TOF of matrix surfaces made by fast evaporation , 1994 .

[97]  A. Inglis Chemical procedures for C-terminal sequencing of peptides and proteins. , 1991, Analytical biochemistry.

[98]  O. Smithies,et al.  Two-Dimensional Electrophoresis of Serum Proteins , 1956, Nature.

[99]  M. Ploug,et al.  In situ alkylation of cysteine residues in a hydrophobic membrane protein immobilized on polyvinylidene difluoride membranes by electroblotting prior to microsequence and amino acid analysis , 1992, Electrophoresis.

[100]  P. Casey,et al.  p21ras is modified by a farnesyl isoprenoid. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[101]  M. Eisenstein,et al.  Towards Atomic Resolution of Prokaryotic Ribosomes: Crystallographic, Genetic and Biochemical Studies , 1993 .

[102]  J. Chang,et al.  A novel manual method for protein-sequence analysis. , 1976, The Biochemical journal.

[103]  Joachim Klose,et al.  Analysis of two‐dimensional electrophoretic protein patterns using a video camera and a computer. II. Adaptation of automatic spot detection to visual evaluation , 1987 .

[104]  J. Salnikow Automated Solid-Phase Microsequencing Using DABITC, On-Column Immobilization of Proteins , 1986 .

[105]  H. Hirano,et al.  Microsequencing of proteins electrotransferred onto immobilizing matrices from polyacrylamide gel electrophoresis: Application to an insoluble protein , 1990, Electrophoresis.

[106]  G. Feher,et al.  Studies of crystal growth mechanisms of proteins by electron microscopy. , 1990, Journal of molecular biology.

[107]  P Ferrara,et al.  In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. , 1992, Analytical biochemistry.

[108]  E. Hall,et al.  The nature of biotechnology. , 1988, Journal of biomedical engineering.

[109]  B. Domon,et al.  Tandem mass spectrometry in structural characterization of oligosaccharide residues in glycoconjugates. , 1990, Methods in enzymology.