Influence diagnostics in Gaussian spatial linear models

Spatial linear models have been applied in numerous fields such as agriculture, geoscience and environmental sciences, among many others. Spatial dependence structure modelling, using a geostatistical approach, is an indispensable tool to estimate the parameters that define this structure. However, this estimation may be greatly affected by the presence of atypical observations in the sampled data. The purpose of this paper is to use diagnostic techniques to assess the sensitivity of the maximum-likelihood estimators, covariance functions and linear predictor to small perturbations in the data and/or the spatial linear model assumptions. The methodology is illustrated with two real data sets. The results allowed us to conclude that the presence of atypical values in the sample data have a strong influence on thematic maps, changing the spatial dependence structure.

[1]  Theory and Methods: Influence Diagnostics for Simultaneous Equations Models , 1998 .

[2]  Chris Chatfield,et al.  Statistical Methods for Spatial Data Analysis , 2004 .

[3]  Gilberto A. Paula,et al.  On influence diagnostic in univariate elliptical linear regression models , 2003 .

[4]  Heleno Bolfarine,et al.  Local influence in elliptical linear regression models , 1997 .

[5]  E Lesaffre,et al.  Local influence in linear mixed models. , 1998, Biometrics.

[6]  Kanti V. Mardia,et al.  On multimodality of the likelihood in the spatial linear model , 1989 .

[7]  Shuangzhe Liu,et al.  Local influence in multivariate elliptical linear regression models , 2002 .

[8]  S. Chatterjee Sensitivity analysis in linear regression , 1988 .

[9]  J. A. Díaz-García,et al.  Influence diagnostics in the capital asset pricing model under elliptical distributions , 2008 .

[10]  P. Farrell,et al.  Generalized local influence with applications to fish stock cohort analysis , 2002 .

[11]  R. M. Loynes,et al.  Local influence: a new approach , 1993 .

[12]  Heleno Bolfarine,et al.  Local Influence in Comparative Calibration Models Under Elliptical t ‐Distributions , 2005, Biometrical journal. Biometrische Zeitschrift.

[13]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[14]  K. Mardia,et al.  Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .

[15]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[16]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[17]  W. Fung,et al.  Generalized Leverage and its Applications , 1998 .

[18]  Phil Diamond,et al.  Robustness of variograms and conditioning of kriging matrices , 1984 .

[19]  W. H. Ross,et al.  The geometry of case deletion and the assessment of influence in nonlinear regression , 1987 .

[20]  R. J. Martin Leverage, influence and residuals in regression models when observations are correlated , 1992 .

[21]  G. R. Dolby The ultrastructural relation: A synthesis of the functional and structural relations , 1976 .

[22]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[23]  Shuangzhe Liu,et al.  On local influence for elliptical linear models , 2000 .

[24]  José A. Díaz-García,et al.  Influence Diagnostics for Elliptical Multivariate Linear Regression Models , 2003 .

[25]  Ronald Christensen,et al.  Prediction diagnostics for spatial linear models , 1992 .

[26]  R. Cook Assessment of Local Influence , 1986 .

[27]  Dale L. Zimmerman,et al.  Computationally efficient restricted maximum likelihood estimation of generalized covariance functions , 1989 .

[28]  J. A. Díaz-García,et al.  SENSITIVITY ANALYSIS IN LINEAR REGRESSION , 2022 .

[29]  James S. Harris,et al.  Tables of integrals , 1998 .

[30]  Christopher J. Nachtsheim,et al.  Diagnostics for mixed-model analysis of variance , 1987 .

[31]  A. Hossain,et al.  A comparative study on detection of influential observations in linear regression , 1991 .

[32]  R. Cook Detection of influential observation in linear regression , 2000 .

[33]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[34]  J. J. Warnes,et al.  A sensitivity analysis for universal kriging , 1986 .

[35]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[36]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[37]  Ronald Christensen,et al.  Covariance function diagnostics for spatial linear models , 1993 .

[38]  R. Dennis Cook,et al.  Leverage and Superleverage in Nonlinear Regression , 1992 .

[39]  Peter K. Kitanidis,et al.  Statistical estimation of polynomial generalized covariance functions and hydrologic applications , 1983 .

[40]  R. Welsch,et al.  The Hat Matrix in Regression and ANOVA , 1978 .

[41]  Richard H. Jones Fitting a stochastic partial differential equation to aquifer data , 1989 .