Image-based Monte Carlo localisation with omnidirectional images

Monte Carlo localisation generally requires a metrical map of the environment to calculate a robots position from the posterior probability density of a set of weighted samples. Image-based localisation, which matches a robots current view of the environment with reference views, fails in environments with perceptual aliasing. The method we present in this paper is experimentally demonstrated to overcome these disadvantages in a large indoor environment by combining Monte Carlo and image-based localisation. It exploits the properties of the Fourier transform of omnidirectional images, while weighting the samples according to the similarity among images. We also introduce a novel strategy for solving the “kidnapped robot problem”.

[1]  Alessandro Rizzi,et al.  Unsupervised matching of visual landmarks for robotic homing using Fourier-Mellin transform , 2002, Robotics Auton. Syst..

[2]  Emanuele Menegatti,et al.  Image-Based Monte-Carlo Localisation without a Map , 2003, AI*IA.

[3]  Horst-Michael Groß,et al.  Omnivision-based probabilistic self-localization for a mobile shopping assistant continued , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[4]  Naokazu Yokoya,et al.  Memory-based self-localization using omnidirectional images , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[5]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[6]  Wolfram Burgard,et al.  Using the CONDENSATION algorithm for robust, vision-based mobile robot localization , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[7]  Ales Leonardis,et al.  Robust localization using panoramic view-based recognition , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[8]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[9]  Hiroshi Ishiguro Development of low-cost compact omnidirectional vision sensors , 2001 .

[10]  Emanuele Menegatti,et al.  Hierarchical Image-based Localisation for Mobile Robots with Monte-Carlo Localisation , 2003 .

[11]  Ben J. A. Kröse,et al.  A probabilistic model for appearance-based robot localization , 2001, Image Vis. Comput..

[12]  P. Fearnhead,et al.  Improved particle filter for nonlinear problems , 1999 .

[13]  José Santos-Victor,et al.  Vision-based navigation and environmental representations with an omnidirectional camera , 2000, IEEE Trans. Robotics Autom..

[14]  Yasushi Yagi,et al.  Map-based navigation for a mobile robot with omnidirectional image sensor COPIS , 1995, IEEE Trans. Robotics Autom..

[15]  Manuela M. Veloso,et al.  Sensor resetting localization for poorly modelled mobile robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[16]  Emanuele Menegatti,et al.  Image-based memory for robot navigation using properties of omnidirectional images , 2004, Robotics Auton. Syst..

[17]  Hiroshi Ishiguro,et al.  Image-based memory of environment , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[18]  Wolfram Burgard,et al.  Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva , 2000, Int. J. Robotics Res..

[19]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[20]  P. Fearnhead,et al.  An improved particle filter for non-linear problems , 1999 .

[21]  Emanuele Menegatti,et al.  Designing an Omnidirectional Vision System for a Goalkeeper Robot , 2001, RoboCup.

[22]  Václav Hlavác,et al.  Zero Phase Representation of Panoramic Images for Image Vased Localization , 1999, CAIP.

[23]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.