Interactive schematic summaries for exploration of surveillance video

We present a new and scalable technique to explore surveillance videos by scatter/gather browsing of trajectories of moving objects. The proposed approach facilitates interactive clustering of trajectories by an effective way of cluster visualization that we term schematic summaries. This novel visualization illustrates cluster summaries in a schematic, non-photorealistic style. To reduce visual clutter, we introduce the trajectory bundling technique. The fusion of schematic summaries and user interaction leads to efficient hierarchical exploration of video data. Examples of different browsing scenarios demonstrate the effectiveness of the proposed method.

[1]  Holger Winnemöller,et al.  Real-time video abstraction , 2006, SIGGRAPH 2006.

[2]  David R. Karger,et al.  Scatter/Gather: a cluster-based approach to browsing large document collections , 1992, SIGIR '92.

[3]  Enrique Vidal,et al.  Computation of Normalized Edit Distance and Applications , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Jarke J. van Wijk,et al.  Force‐Directed Edge Bundling for Graph Visualization , 2009, Comput. Graph. Forum.

[5]  Weimao Ke,et al.  Dynamicity vs. effectiveness: studying online clustering for scatter/gather , 2009, SIGIR.

[6]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[7]  Klaus Schöffmann,et al.  Video Browsing Using Interactive Navigation Summaries , 2009, 2009 Seventh International Workshop on Content-Based Multimedia Indexing.

[8]  T. Warren Liao,et al.  Clustering of time series data - a survey , 2005, Pattern Recognit..

[9]  Ariel Bleicher Eyes in the Sky That See Too Much [Update] , 2010 .

[10]  J. Leo van Hemmen,et al.  Mapping time , 2002, Biological Cybernetics.

[11]  Fredrik Nilsson,et al.  Intelligent Network Video: Understanding Modern Video Surveillance Systems , 2008 .

[12]  Yael Pritch,et al.  Clustered Synopsis of Surveillance Video , 2009, 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance.

[13]  Gunther Heidemann,et al.  Uncertainty-aware video visual analytics of tracked moving objects , 2011 .

[14]  Stefan Schlechtweg,et al.  Non-photorealistic computer graphics: modeling, rendering, and animation , 2002 .

[15]  Satoru Miyano,et al.  Open source clustering software , 2004 .

[16]  Gunther Heidemann,et al.  Information-based adaptive fast-forward for visual surveillance , 2011, Multimedia Tools and Applications.

[17]  Weimao Ke,et al.  A Fast Online Clustering Algorithm for Scatter / Gather Browsing , 2007 .

[18]  Simone Calderara,et al.  A videosurveillance data browsing software architecture for forensics: from trajectories similarities to video fragments , 2010, MiFor '10.

[19]  Francesco G. B. De Natale,et al.  Object Trajectory Analysis in Video Indexing and Retrieval Applications , 2010, Video Search and Mining.

[20]  Barbara Majecka,et al.  Statistical models of pedestrian behaviour in the Forum , 2009 .

[21]  S Miyano,et al.  Open source clustering software. , 2004, Bioinformatics.

[22]  David Salesin,et al.  Schematic storyboarding for video visualization and editing , 2006, SIGGRAPH 2006.

[23]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.