Viscous liquids and the glass transition. V. Sources of the excess specific heat of the liquid

The possibility that the excess ’’configurational’’ specific heat ΔCp of liquids above the glass transition temperature Tg might contain contributions either from changes in vibrational frequencies with configurational state, from changes in the anharmonicity of vibrations, or from the influence of changes in configurational state on the thermodynamic contributions of molecular rearrangement processes that also give rise to secondary relaxations below Tg is investigated with the use of calorimetric data on six quenched and annealed glasses. It is concluded that at least half of ΔCp arises from these sources, the greater part of this either from anharmonicity or from the molecular rearrangement processes.

[1]  J. C. Tucker,et al.  Dependence of the glass transition temperature on heating and cooling rate , 1974 .

[2]  H. Suga,et al.  Thermodynamic investigation on glassy states of pure simple compounds , 1974 .

[3]  R. Simha,et al.  Configurational Thermodynamic Properties of Polymer Liquids and Glasses. Poly(vinyl acetate). II , 1974 .

[4]  A. B. Bestul,et al.  Heat capacities of selenium crystal (trigonal), glass, and liquid from 5 to 360 K , 1974 .

[5]  C. H. Wang,et al.  Brillouin and Rayleigh scattering in polybutadiene , 1974 .

[6]  P. S. Wilson,et al.  Thermal Expansion of Amorphous Polymers at Atmospheric Pressure. I. Experimental , 1973 .

[7]  R. Simha,et al.  Low‐temperature equation of state for amorphous polymer glasses , 1972 .

[8]  K. J. Rao,et al.  Configurational Excitations in Condensed Matter, and the ``Bond Lattice'' Model for the Liquid‐Glass Transition , 1972 .

[9]  A. B. Bestul,et al.  Heat Capacity and Thermodynamic Properties of o‐Terphenyl Crystal, Glass, and Liquid , 1972 .

[10]  P. B. Macedo,et al.  Degenerate Excited State in the Structure of B2O3 , 1971 .

[11]  A. B. Bestul,et al.  Heat Capacities of Cubic, Monoclinic, and Vitreous Arsenious Oxide from 5 to 360°K , 1971 .

[12]  F. Mopsik,et al.  Normal Mode Calculation of Grneisen Thermal Expansion inn-Alkanes , 1971 .

[13]  A. B. Bestul,et al.  Heat Capacities of cis-1,4-Polyisoprene from 2 to 360 K. , 1971, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[14]  A. J. Matheson,et al.  Shear viscoelastic relaxation of a nitrate melt , 1971 .

[15]  Martin Goldstein,et al.  Viscous Liquids and the Glass Transition. II. Secondary Relaxations in Glasses of Rigid Molecules , 1970 .

[16]  D. P. Eastman,et al.  Evidence for Structure in Plastics from Light Scattering , 1969 .

[17]  R. D. Andrews,et al.  Brillouin Scattering Near the Glass Transition of Polymethyl Methacrylate , 1969 .

[18]  A. Barlow,et al.  Viscoelastic relaxation in a series of polyethylacrylates and poly-n-butylacrylates , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  H. A. Stuart,et al.  Umwandlungserscheinungen in amorphen Hochpolymeren beim tempern unterhalb der Glastemperatur , 1968 .

[20]  F. E. Karasz,et al.  Thermodynamic properties of poly(2,6‐dimethyl‐1,4‐phenylene ether) , 1968 .

[21]  C. Angell Oxide Glasses in Light of the “Ideal Glass” Concept: I, Ideal and Nonideal Transitions, and Departures from Ideality* , 1968 .

[22]  R. Dickie,et al.  Viscoelastic relaxation in poly-1-butenes of low molecular weight , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  D. Turnbull,et al.  Test of Adam—Gibbs Liquid Viscosity Model with o-Terphenyl Specific-Heat Data , 1967 .

[24]  A. B. Bestul,et al.  Heat Capacities and Related Thermal Data for Diethyl Phthalate Crystal, Glass, and Liquid to 360 °K. , 1967, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[25]  A. Barlow,et al.  Viscoelastic relaxation of supercooled liquids. II , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[26]  P. B. Macedo,et al.  Two‐State Model for the Free Volume of Vitreous B2O3 , 1966 .

[27]  T. Litovitz,et al.  Viscoelastic Relaxation and Non‐Arrhenius Behavior in Diols , 1966 .

[28]  A. B. Bestul,et al.  Limits on Calorimetric Residual Entropies of Glasses , 1965 .

[29]  T. Litovitz,et al.  Shear and Structural Relaxation in Molten Zinc Chloride , 1964 .

[30]  Stuart A. Rice,et al.  Absorption and Dispersion of Ultrasonic Waves , 1960 .

[31]  J. H. Gibbs,et al.  Chain Stiffness and the Lattice Theory of Polymer Phases , 1958 .

[32]  J. H. Gibbs,et al.  Nature of the Glass Transition and the Glassy State , 1958 .

[33]  R. Davies,et al.  Thermodynamic and kinetic properties of glasses , 1953 .

[34]  W. Kauzmann The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures. , 1948 .

[35]  D. H. Andrews,et al.  Calculation of the Heat Capacity Curves of Crystalline Benzene and Benzene‐d6 , 1937 .

[36]  G. S. Parks,et al.  Studies on Glass. VI. Some Specific Heat Data on Boron Trioxide , 1930 .