The essential role of fructose-1,6-bisphosphatase 2 enzyme in thermal homeostasis upon cold stress

[1]  Hui-Young Lee,et al.  Adipocyte-Specific Deficiency of De Novo Sphingolipid Biosynthesis Leads to Lipodystrophy and Insulin Resistance , 2017, Diabetes.

[2]  G. Shulman,et al.  Mitochondrial-Targeted Catalase Protects Against High-Fat Diet–Induced Muscle Insulin Resistance by Decreasing Intramuscular Lipid Accumulation , 2017, Diabetes.

[3]  Mee-Sup Yoon,et al.  Phospholipase D1 deficiency in mice causes nonalcoholic fatty liver disease via an autophagy defect , 2016, Scientific Reports.

[4]  M. Periasamy,et al.  Sarcolipin: A Key Thermogenic and Metabolic Regulator in Skeletal Muscle , 2016, Trends in Endocrinology & Metabolism.

[5]  R. Santer,et al.  A summary of molecular genetic findings in fructose-1,6-bisphosphatase deficiency with a focus on a common long-range deletion and the role of MLPA analysis , 2016, Orphanet Journal of Rare Diseases.

[6]  M. Catauro,et al.  Quantitative calculation of the role of the Na(+),K(+)-ATPase in thermogenesis. , 2013, Biochimica et biophysica acta.

[7]  D. Rakus,et al.  Destabilization of fructose 1,6-bisphosphatase-Z-line interactions is a mechanism of glyconeogenesis down-regulation in vivo. , 2013, Biochimica et biophysica acta.

[8]  K. Flaherty,et al.  Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals , 2012, Nature Medicine.

[9]  D. Rakus,et al.  Muscle FBPase binds to cardiomyocyte mitochondria under glycogen synthase kinase‐3 inhibition or elevation of cellular Ca2+ level , 2012, FEBS letters.

[10]  K. Petersen,et al.  Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. , 2010, Cell metabolism.

[11]  M. Reitman,et al.  Body temperature as a mouse pharmacodynamic response to bombesin receptor subtype-3 agonists and other potential obesity treatments. , 2010, American journal of physiology. Endocrinology and metabolism.

[12]  R. DeFronzo,et al.  Skeletal Muscle Insulin Resistance Is the Primary Defect in Type 2 Diabetes , 2009, Diabetes Care.

[13]  M. Erion,et al.  Inhibition of Fructose 1,6-Bisphosphatase Reduces Excessive Endogenous Glucose Production and Attenuates Hyperglycemia in Zucker Diabetic Fatty Rats , 2006, Diabetes.

[14]  F. Haman,et al.  Shivering in the cold: from mechanisms of fuel selection to survival. , 2006, Journal of applied physiology.

[15]  J. Weber,et al.  Fuel selection in shivering humans. , 2005, Acta physiologica Scandinavica.

[16]  Jianming Xu Preparation, culture, and immortalization of mouse embryonic fibroblasts. , 2005, Current protocols in molecular biology.

[17]  O. Meyerhof Über die Energieumwandlungen im Muskel , 1920, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[18]  R. Ross,et al.  Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. , 2000, Journal of applied physiology.

[19]  R. Shulman,et al.  In vivo regulation of muscle glycogen synthase and the control of glycogen synthesis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[20]  H. Blau,et al.  Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy , 1994, The Journal of cell biology.

[21]  B. Saltin,et al.  Substrates for muscle glycogen synthesis in recovery from intense exercise in man. , 1991, The Journal of physiology.

[22]  A. Bonen,et al.  Glycogenesis and glyconeogenesis in skeletal muscle: effects of pH and hormones. , 1990, The American journal of physiology.

[23]  R G Shulman,et al.  Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. , 1990, The New England journal of medicine.

[24]  R. Shulman,et al.  Direct observation of glycogen synthesis in human muscle with 13C NMR. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[25]  G. Vawter,et al.  INVESTIGATION OF INBORN ERRORS OF METABOLISM IN UNEXPECTED INFANT DEATHS , 1988, The Lancet.

[26]  R. Unger,et al.  Active hepatic glycogen synthesis from gluconeogenic precursors despite high tissue levels of fructose 2,6-bisphosphate. , 1986, The Journal of biological chemistry.

[27]  E. Newsholme,et al.  The rate of substrate cycling between fructose 6-phosphate and fructose 1,6-bisphosphate in skeletal muscle from cold-exposed, hyperthyroid or acutely exercised rats. , 1985, The Biochemical journal.

[28]  A. Lehninger Principles of Biochemistry , 1984 .

[29]  C. Pearson,et al.  Muscle fructose 1,6-diphosphatase deficiency associated with an atypical central core disease , 1980, Journal of the Neurological Sciences.

[30]  J. Holloszy,et al.  Glycogen synthesis from lactate in the three types of skeletal muscle. , 1979, The Journal of biological chemistry.

[31]  E. Newsholme The role of the fructose 6-phosphate/fructose 1,6-diphosphate cycle in metabolic regulation and heat generation. , 1976, Biochemical Society transactions.

[32]  G. Brooks,et al.  Glycogen synthesis and metabolism of lactic acid after exercise. , 1973, The American journal of physiology.

[33]  D. Kipnis,et al.  Hepatic fructose-1,6-diphosphatase deficiency. A cause of lactic acidosis and hypoglycemia in infancy. , 1972, The Journal of clinical investigation.

[34]  A. Winegrad,et al.  Fasting hypoglycaemia and metabolic acidosis associated with deficiency of hepatic fructose-1,6-diphosphatase activity. , 1970, Lancet.

[35]  M. K. Gould,et al.  Synthesis of glycogen from glucose and lactate in isolated rat soleus muscle. , 1969, Archives of biochemistry and biophysics.

[36]  L. Opie,et al.  The activities of fructose 1,6-diphosphatase, phosphofructokinase and phosphoenolpyruvate carboxykinase in white muscle and red muscle. , 1967, The Biochemical journal.

[37]  H. Krebs,et al.  FRUCTOSE 1, 6-DIPHOSPHATASE IN STRIATED MUSCLE. , 1965, The Biochemical journal.

[38]  A. V. Hill MUSCULAR ACTIVITY AND CARBOHYDRATE METABOLISM. , 1924, Science.