On Uniform Convexity, Total Convexity and Convergence of the Proximal Point and Outer Bregman Projection Algorithms in Banach Spaces

In this paper we study and compare the notions of uniform convexity of functions at a point and on bounded sets with the notions of total convexity at a point and sequential consistency of functions, respectively. We establish connections between these concepts of strict convexity in inflnite dimensional settings and use the connections in order to obtain improved convergence results concerning the outer Bregman projection algorithm for solving convex feasibility problems and the generalized proximal point algorithm for optimization in Banach spaces.

[1]  Edgar Asplund Averaged norms , 1967 .

[2]  R. T. Rockafellar,et al.  Gradients of convex functions , 1969 .

[3]  R. Rockafellar Local boundedness of nonlinear, monotone operators. , 1969 .

[4]  Zita Poracká-Diviš Existence Theorem and Convergence of Minimizing Sequences in Extremum Problems , 1971 .

[5]  J. Diestel Geometry of Banach Spaces: Selected Topics , 1975 .

[6]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[7]  T. Zolezzi,et al.  On equiwellset minimum problems , 1977 .

[8]  J. Baillon,et al.  Un exemple concernant le comportement asymptotique de la solution du problème dudt + ∂ϑ(μ) ∋ 0 , 1978 .

[9]  S. Reich,et al.  Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces , 1979 .

[10]  Y. Censor,et al.  An iterative row-action method for interval convex programming , 1981 .

[11]  C. Zălinescu On uniformly convex functions , 1983 .

[12]  I. Ciorǎnescu Geometry of banach spaces, duality mappings, and nonlinear problems , 1990 .

[13]  Jean-Paul Penot,et al.  Inversion of real-valued functions and applications , 1990, ZOR Methods Model. Oper. Res..

[14]  Osman Güer On the convergence of the proximal point algorithm for convex minimization , 1991 .

[15]  Y. Censor,et al.  Proximal Minimization Algorithm with D-Functions 1'2 , 1992 .

[16]  Yair Censor,et al.  Iterative Averaging of Entropic Projections for Solving Stochastic Convex Feasibility Problems , 1997, Comput. Optim. Appl..

[17]  A. Iusem,et al.  On a proximal point method for convex optimization in banach spaces , 1997 .

[18]  Alfredo N. Iusem,et al.  Minimization Of Nonsmooth Convex Functionals In Banach Spaces , 1997 .

[19]  Regina Sandra Burachik,et al.  A Proximal Point Method for the Variational Inequality Problem in Banach Spaces , 2000, SIAM J. Control. Optim..

[20]  Heinz H. Bauschke,et al.  Dykstras algorithm with bregman projections: A convergence proof , 2000 .

[21]  On mixed Hölder-Minkowski inequalities and total convexity of certain functions in ℒ^p(Ω) , 2000 .

[22]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[23]  Alfredo N. Iusem,et al.  Total Convexity for Powers of the Norm in Uniformly Convex Banach Spaces , 2000 .

[24]  Benar Fux Svaiter,et al.  Forcing strong convergence of proximal point iterations in a Hilbert space , 2000, Math. Program..

[25]  Alfredo N. Iusem,et al.  Iterative Methods of Solving Stochastic Convex Feasibility Problems and Applications , 2000, Comput. Optim. Appl..

[26]  A. Iusem,et al.  Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization , 2000 .

[27]  Alfredo N. Iusem,et al.  Extension of Subgradient Techniques for Nonsmooth Optimization in Banach Spaces , 2001 .

[28]  Heinz H. Bauschke,et al.  ESSENTIAL SMOOTHNESS, ESSENTIAL STRICT CONVEXITY, AND LEGENDRE FUNCTIONS IN BANACH SPACES , 2001 .

[29]  D. Butnariu,et al.  The Outer Bregman Projection Method for Stochastic Feasibility Problems in Banach Spaces , 2001 .

[30]  A. Iusem,et al.  INEXACT VERSIONS OF PROXIMAL POINT AND AUGMENTED LAGRANGIAN ALGORITHMS IN BANACH SPACES , 2001 .

[31]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[32]  D. Butnariu,et al.  Averaged Subgradient Methods for Constrained Convex Optimization and Nash Equilibria Computation , 2002 .