Random orders of dimension 2

AbstractA relationship is established between (partially) ordered sets of dimension 2 chosen randomly on a labelled set, chosen randomly by isomorphism type, or generated by pairs of random linear orderings. As a consequence we are able to determine the limiting probability (in each of the above sample spaces) that a two-dimensional order is rigid, is uniquely realizable, or has uniquely orientable comparability graph; all these probabilities lie strictly between 0 and 1. Finally, we show that the number of 2-dimensional (partial) orderings of a labelled n-element set is $$(1 + o(1))n!^2 /(2\sqrt e ).$$ .