Identification of novel chondroitin proteoglycans in Caenorhabditis elegans: embryonic cell division depends on CPG-1 and CPG-2

Vertebrates produce multiple chondroitin sulfate proteoglycans that play important roles in development and tissue mechanics. In the nematode Caenorhabditis elegans, the chondroitin chains lack sulfate but nevertheless play essential roles in embryonic development and vulval morphogenesis. However, assignment of these functions to specific proteoglycans has been limited by the lack of identified core proteins. We used a combination of biochemical purification, Western blotting, and mass spectrometry to identify nine C. elegans chondroitin proteoglycan core proteins, none of which have homologues in vertebrates or other invertebrates such as Drosophila melanogaster or Hydra vulgaris. CPG-1/CEJ-1 and CPG-2 are expressed during embryonic development and bind chitin, suggesting a structural role in the egg. RNA interference (RNAi) depletion of individual CPGs had no effect on embryonic viability, but simultaneous depletion of CPG-1/CEJ-1 and CPG-2 resulted in multinucleated single-cell embryos. This embryonic lethality phenocopies RNAi depletion of the SQV-5 chondroitin synthase, suggesting that chondroitin chains on these two proteoglycans are required for cytokinesis.

[1]  J. Beintema Structural features of plant chitinases and chitin‐binding proteins , 1994, FEBS letters.

[2]  John I. Clark,et al.  Shotgun identification of protein modifications from protein complexes and lens tissue , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[3]  H. Horvitz,et al.  The Caenorhabditis elegans vulval morphogenesis gene sqv-4 encodes a UDP-glucose dehydrogenase that is temporally and spatially regulated , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  S. Selleck,et al.  Structural Analysis of Glycosaminoglycans inDrosophila and Caenorhabditis elegans and Demonstration That tout-velu, a Drosophila Gene Related to EXT Tumor Suppressors, Affects Heparan Sulfate in Vivo * , 2000, The Journal of Biological Chemistry.

[5]  H. Merzendorfer,et al.  Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases , 2003, Journal of Experimental Biology.

[6]  H. Horvitz,et al.  SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N- acetylgalactosamine, and UDP-galactose , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Couchman,et al.  cDNA Cloning of the Basement Membrane Chondroitin Sulfate Proteoglycan Core Protein, Bamacan: A Five Domain Structure Including Coiled-Coil Motifs , 1997, The Journal of cell biology.

[8]  H. Horvitz,et al.  The Caenorhabditis elegans Genes sqv-2and sqv-6, Which Are Required for Vulval Morphogenesis, Encode Glycosaminoglycan Galactosyltransferase II and Xylosyltransferase* 210 , 2003, The Journal of Biological Chemistry.

[9]  P. Zipperlen,et al.  Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans , 2000, Genome Biology.

[10]  Y. Hirabayashi,et al.  Determination of the Glycosaminoglycan-Protein Linkage Region Oligosaccharide Structures of Proteoglycans from Drosophila melanogaster and Caenorhabditis elegans * , 2002, The Journal of Biological Chemistry.

[11]  S. Komai,et al.  Age-Dependent Enhancement of Hippocampal Long-Term Potentiation and Impairment of Spatial Learning through the Rho-Associated Kinase Pathway in Protein Tyrosine Phosphatase Receptor Type Z-Deficient Mice , 2005, The Journal of Neuroscience.

[12]  H. Kitagawa,et al.  Nematode Chondroitin Polymerizing Factor Showing Cell-/Organ-specific Expression Is Indispensable for Chondroitin Synthesis and Embryonic Cell Division* , 2004, Journal of Biological Chemistry.

[13]  R. Iozzo Matrix proteoglycans: from molecular design to cellular function. , 1998, Annual review of biochemistry.

[14]  Lance Wells,et al.  Mapping Sites of O-GlcNAc Modification Using Affinity Tags for Serine and Threonine Post-translational Modifications* , 2002, Molecular & Cellular Proteomics.

[15]  M. Domowicz,et al.  Proteoglycans in brain development , 2004, Glycoconjugate Journal.

[16]  J. Goldstein,et al.  Expression of recombinant microfilarial chitinase and analysis of domain function. , 1996, Molecular and biochemical parasitology.

[17]  K. Oegema,et al.  Distinct roles for two C. elegans anillins in the gonad and early embryo , 2005, Development.

[18]  V. Reinke,et al.  A global profile of germline gene expression in C. elegans. , 2000, Molecular cell.

[19]  J. Gready,et al.  Comparative analysis of structural properties of the C‐type‐lectin‐like domain (CTLD) , 2003, Proteins.

[20]  O Habuchi,et al.  Diversity and functions of glycosaminoglycan sulfotransferases. , 2000, Biochimica et biophysica acta.

[21]  Yoshihiko Yamada,et al.  Role of perlecan in skeletal development and diseases , 2002, Glycoconjugate Journal.

[22]  S. Selleck,et al.  Order out of chaos: assembly of ligand binding sites in heparan sulfate. , 2002, Annual review of biochemistry.

[23]  J. Bessereau,et al.  [C. elegans: of neurons and genes]. , 2003, Medecine sciences : M/S.

[24]  P. Robbins,et al.  The Caenorhabditis elegans sqv genes and functions of proteoglycans in development. , 2002, Biochimica et biophysica acta.

[25]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[26]  H. Kitagawa,et al.  Chondroitin proteoglycans are involved in cell division of Caenorhabditis elegans , 2003, Nature.

[27]  C. Wright,et al.  Evolution of a family of N-acetylglucosamine binding proteins containing the disulfide-rich domain of wheat germ agglutinin. , 1991, Journal of molecular evolution.

[28]  J. Esko Special Considerations for Proteoglycans and Glycosaminoglycans and Their Purification , 1993, Current protocols in molecular biology.

[29]  J. Esko,et al.  Regulated Translation of Heparan SulfateN-Acetylglucosamine N-Deacetylase/N-Sulfotransferase Isozymes by Structured 5′-Untranslated Regions and Internal Ribosome Entry Sites* , 2002, The Journal of Biological Chemistry.

[30]  C. Wright,et al.  Evolution of a family ofN-acetylglucosamine binding proteins containing the disulfide-rich domain of wheat germ agglutinin , 1991, Journal of Molecular Evolution.

[31]  M. Young,et al.  Targeted Disruption of Two Small Leucine-rich Proteoglycans, Biglycan and Decorin, Excerpts Divergent Effects on Enamel and Dentin Formation , 2005, Calcified Tissue International.

[32]  T. Schedl,et al.  Identification of in vivo mRNA targets of GLD-1, a maxi-KH motif containing protein required for C. elegans germ cell development. , 2001, Genes & development.

[33]  R. Iozzo,et al.  Overexpression of Bamacan/SMC3 Causes Transformation* , 2000, The Journal of Biological Chemistry.

[34]  W. Stallcup,et al.  Pathological angiogenesis is reduced by targeting pericytes via the NG2 proteoglycan , 2004, Angiogenesis.

[35]  John R Yates,et al.  Analysis of quantitative proteomic data generated via multidimensional protein identification technology. , 2002, Analytical chemistry.

[36]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[37]  S. Selleck,et al.  sqv-3, -7, and -8, a set of genes affecting morphogenesis in Caenorhabditis elegans, encode enzymes required for glycosaminoglycan biosynthesis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  T. Schedl,et al.  GLD-1, a cytoplasmic protein essential for oocyte differentiation, shows stage- and sex-specific expression during Caenorhabditis elegans germline development. , 1996, Developmental biology.

[39]  T. Schedl,et al.  Translation repression by GLD-1 protects its mRNA targets from nonsense-mediated mRNA decay in C. elegans. , 2004, Genes & development.

[40]  H. Horvitz,et al.  sqv mutants of Caenorhabditis elegans are defective in vulval epithelial invagination. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Domowicz,et al.  Chondrodysplasias due to proteoglycan defects. , 2002, Glycobiology.

[42]  O. Reizes,et al.  Unlocking the secrets of syndecans: Transgenic organisms as a potential key , 2002, Glycoconjugate Journal.

[43]  H. Horvitz,et al.  Caenorhabditis elegans early embryogenesis and vulval morphogenesis require chondroitin biosynthesis , 2003, Nature.

[44]  H. Horvitz,et al.  The SQV-1 UDP-glucuronic acid decarboxylase and the SQV-7 nucleotide-sugar transporter may act in the Golgi apparatus to affect Caenorhabditis elegans vulval morphogenesis and embryonic development , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[45]  H. Kitagawa,et al.  Demonstration of glycosaminoglycans in Caenorhabditis elegans , 1999, FEBS letters.

[46]  J. Esko,et al.  Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase. , 1989, The Journal of biological chemistry.

[47]  H. Kitagawa,et al.  Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. , 2003, Current opinion in structural biology.

[48]  J. Yates,et al.  An automated multidimensional protein identification technology for shotgun proteomics. , 2001, Analytical chemistry.

[49]  William J. Lennarz,et al.  Encyclopedia of biological chemistry , 2004 .

[50]  K. Oegema,et al.  A complex containing the Sm protein CAR-1 and the RNA helicase CGH-1 is required for embryonic cytokinesis in Caenorhabditis elegans , 2005, The Journal of cell biology.

[51]  A. Marneros,et al.  Physiological role of collagen XVIII and endostatin , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[52]  J. Esko,et al.  Influence of core protein sequence on glycosaminoglycan assembly. , 1996, Current opinion in structural biology.