Shuttling through reversible covalent chemistry.

The first stimuli-responsive molecular shuttle that functions through reversible C-C bond formation is reported.

[1]  Francesco Zerbetto,et al.  Entropy-driven translational isomerism: a tristable molecular shuttle. , 2003, Angewandte Chemie.

[2]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[3]  Alexandra M. Z. Slawin,et al.  Glycylglycine Rotaxanes—The Hydrogen Bond Directed Assembly of Synthetic Peptide Rotaxanes , 1997 .

[4]  David J. Williams,et al.  Acid−Base Controllable Molecular Shuttles† , 1998 .

[5]  Jean-Pierre Sauvage,et al.  Chemically induced contraction and stretching of a linear rotaxane dimer. , 2002, Chemistry.

[6]  He Tian,et al.  A Lockable Light‐Driven Molecular Shuttle with a Fluorescent Signal , 2004 .

[7]  H. Anderson,et al.  Azo‐Dye Rotaxanes , 1997 .

[8]  Vincenzo Balzani,et al.  Redox-controllable amphiphilic [2]rotaxanes. , 2004, Chemistry.

[9]  Dress,et al.  A photochemically driven molecular-level abacus , 2000, Chemistry.

[10]  Hsian-Rong Tseng,et al.  Toward chemically controlled nanoscale molecular machinery. , 2003, Angewandte Chemie.

[11]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[12]  David A. Leigh,et al.  Peptide-Based Molecular Shuttles , 1997 .

[13]  Harry L Anderson,et al.  Unidirectional photoinduced shuttling in a rotaxane with a symmetric stilbene dumbbell. , 2002, Angewandte Chemie.

[14]  Nobuhiro Kihara,et al.  Redox behavior of ferrocene-containing rotaxane: transposition of the rotaxane wheel by redox reaction of a ferrocene moiety tethered at the end of the axle. , 2004, Organic letters.

[15]  D. Zehnder,et al.  Facile synthesis of rotaxanes through condensation reactions of DCC-[2]rotaxanes. , 2001, Organic letters.

[16]  Maurizio Prato,et al.  Hydrogen bond-assembled fullerene molecular shuttle. , 2003, Organic letters.

[17]  David A Leigh,et al.  Shuttling through anion recognition. , 2004, Angewandte Chemie.

[18]  Harry L. Anderson,et al.  Rotaxane‐Encapsulation Enhances the Stability of an Azo Dye, in Solution and when Bonded to Cellulose , 2001 .

[19]  H. Kwart,et al.  The reverse Diels-Alder or retrodiene reaction , 1968 .

[20]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[21]  Euan R Kay,et al.  Electrochemically switchable hydrogen-bonded molecular shuttles. , 2003, Journal of the American Chemical Society.

[22]  David A Leigh,et al.  Chiroptical switching in a bistable molecular shuttle. , 2003, Journal of the American Chemical Society.

[23]  F. Paolucci,et al.  Photoinduction of Fast, Reversible Translational Motion in a Hydrogen-Bonded Molecular Shuttle , 2001, Science.

[24]  J Fraser Stoddart,et al.  An acid-base switchable [2]rotaxane. , 2002, The Journal of organic chemistry.

[25]  David A Leigh,et al.  Controlled submolecular translational motion in synthesis: a mechanically interlocking auxiliary. , 2004, Angewandte Chemie.

[26]  T. Takata,et al.  Rotaxane-stabilized thiophosphonium salt from disulfide and phosphine. , 2003, Organic letters.

[27]  I. V. van Stokkum,et al.  Enhanced hydrogen bonding induced by optical excitation: unexpected subnanosecond photoinduced dynamics in a peptide-based [2]rotaxane. , 2001, Journal of the American Chemical Society.

[28]  Francesco Zerbetto,et al.  Photoisomerization of a rotaxane hydrogen bonding template: Light-induced acceleration of a large amplitude rotational motion , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[29]  N. Nakashima,et al.  A Light-Driven Molecular Shuttle Based on a Rotaxane , 1997 .

[30]  Pablo Gaviña,et al.  Rotaxanes Incorporating Two Different Coordinating Units in Their Thread: Synthesis and Electrochemically and Photochemically Induced Molecular Motions , 1999 .

[31]  F. Vögtle,et al.  Chemical Reactions in the Axle of Rotaxanes – Steric Hindrance by the Wheel , 1999 .

[32]  Agnieszka Więckowska,et al.  An Electrochemically Controlled Molecular Shuttle , 2004 .

[33]  Adele Dell'Erba,et al.  Anthracene-Containing [2]Rotaxanes: Synthesis, Spectroscopic, and Electrochemical Properties , 2000 .

[34]  S. Nepogodiev,et al.  Stiff, and sticky in the right places: the dramatic influence of preorganizing guest binding sites on the hydrogen bond-directed assembly of rotaxanes. , 2001, Journal of the American Chemical Society.

[35]  Otto Diels,et al.  Synthesen in der hydroaromatischen Reihe , 1928 .

[36]  Francesco Zerbetto,et al.  Remarkable positional discrimination in bistable light- and heat-switchable hydrogen-bonded molecular shuttles. , 2003, Angewandte Chemie.

[37]  He Tian,et al.  A light-driven rotaxane molecular shuttle with dual fluorescence addresses. , 2004, Organic letters.

[38]  Christopher L. Brown,et al.  Structure-reactivity relationship in interlocked molecular compounds and in their supramolecular model complexes , 1997 .

[39]  J. Fraser Stoddart,et al.  The Self‐Assembly of a Switchable [2]Rotaxane , 1997 .

[40]  Harry W. Gibson,et al.  Controlling Microstructure in Polymeric Molecular Shuttles: Solvent‐Induced Localization of Macrocycles in Poly(urethane/crown ether) Rotaxanes , 1997 .

[41]  J. Fraser Stoddart,et al.  Amphiphilic Bistable Rotaxanes , 2003 .

[42]  Jean-Pierre Sauvage,et al.  Rotaxanes as new architectures for photoinduced electron transfer and molecular motions , 1999 .