Rational hedging and valuation of integrated risks under constant absolute risk aversion

Abstract We study a rational valuation and hedging principle for contingent claims which integrate tradable and non-tradable sources of risk. The principle is based on the preferences of a rational investor with constant absolute risk aversion, and uses exponential utility-indifference arguments. Properties of this valuation and of a corresponding hedging strategy are analyzed in a general semi-martingale market framework. To obtain further constructive results and properties, a more specific class of semi-complete product models is studied in detail. This yields a computation scheme, simple valuation bounds, and results on diversification and information effects.

[1]  Dirk Becherer Utility–indifference hedging and valuation via reaction–diffusion systems , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  W. Schachermayer Optimal investment in incomplete markets when wealth may become negative , 2001 .

[3]  Stock Life Insurance Company Profitability and Workable Competition . By S. Travis Pritchett & Ronald P. Wilder: (S. S. Huebner Foundation for Insurance Education, Wharton School, University of Pennsylvania, Philadelphia). , 1987 .

[4]  B. Engquist,et al.  Mathematics Unlimited: 2001 and Beyond , 2001 .

[5]  Shunsuke Ihara,et al.  Information theory - for continuous systems , 1993 .

[6]  H. Bühlmann Actuaries of the Third Kind , 1989 .

[7]  Eduardo S. Schwartz,et al.  Pricing and Investment Strategies for Guaranteed Equity-Linked Life Insurance , 1979 .

[8]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[9]  C. Klüppelberg Developments in Insurance Mathematics , 2001 .

[10]  T. Rolski Stochastic Processes for Insurance and Finance , 1999 .

[11]  Doktor der Naturwissenschaften,et al.  Rational Hedging and Valuation with Utility-Based Preferences , 2001 .

[12]  J. Mémin,et al.  Espaces de semi martingales et changement de probabilité , 1980 .

[13]  Hans U. Gerber,et al.  An introduction to mathematical risk theory , 1982 .

[14]  J. Jacod Calcul stochastique et problèmes de martingales , 1979 .

[15]  F. Delbaen,et al.  Exponential Hedging and Entropic Penalties , 2002 .

[16]  He Sheng Wu,et al.  The property of predictable representation of the sum of independent semimartingales , 1982 .

[17]  Marco Frittelli,et al.  Introduction to a theory of value coherent with the no-arbitrage principle , 2000, Finance Stochastics.

[18]  Thomas Møller Indifference pricing of insurance contracts in a product space model , 2003, Finance Stochastics.

[19]  V. Henderson,et al.  VALUATION OF CLAIMS ON NONTRADED ASSETS USING UTILITY MAXIMIZATION , 2002 .

[20]  Dirk Becherer The numeraire portfolio for unbounded semimartingales , 2001, Finance Stochastics.

[21]  Francesco Russo,et al.  Seminar on stochastic analysis, random fields and applications IV , 1995 .

[22]  D. Kramkov Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets , 1996 .

[23]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[24]  Tomasz Rolski,et al.  Stochastic Processes for Insurance and Finance , 2001 .

[25]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[26]  Dieter Sondermann,et al.  Reinsurance in arbitrage-free markets , 1991 .

[27]  Hans Bühlmann,et al.  The General Economic Premium Principle , 1984, ASTIN Bulletin.

[28]  Thomas Møller,et al.  On transformations of actuarial valuation principles , 2001 .

[29]  H. Gerber,et al.  Actuarial bridges to dynamic hedging and option pricing , 1996 .

[30]  Walter Schachermayer,et al.  How Potential Investments may Change the Optimal Portfolio for the Exponential Utility , 2002 .

[31]  H. Geman Learning About Risk: Some Lessons from Insurance , 1999 .

[32]  Nicole El Karoui,et al.  Pricing Via Utility Maximization and Entropy , 2000 .

[33]  S. Pliska,et al.  Mathematics of Derivative Securities , 1998 .

[34]  Hans U. Gerber A.S.A.,et al.  Utility Functions: From Risk Theory to Finance , 1998 .

[35]  T. Møller Indifference pricing of insurance contracts in a product space model: applications , 2003 .

[36]  Y. Kabanov,et al.  On the optimal portfolio for the exponential utility maximization: remarks to the six‐author paper , 2002 .

[37]  Hui Wang,et al.  Utility maximization in incomplete markets with random endowment , 2001, Finance Stochastics.

[38]  Yuri Kabanov,et al.  On equivalent martingale measures with bounded densities , 2001 .

[39]  Martin Schweizer From actuarial to financial valuation principles , 2001 .

[40]  Leonard Rogers Duality in constrained optimal investment and consumption problems: a synthesis , 2003 .

[41]  Dirk Becherer,et al.  A monetary value for initial information in portfolio optimization , 2003, Finance Stochastics.

[42]  F. Delbaen,et al.  A martingale approach to premium calculation principles in an arbitrage free market , 1989 .

[43]  M. Owen,et al.  Utility based optimal hedging in incomplete markets , 2002 .

[44]  C. Stricker Indifference Pricing with Exponential Utility , 2004 .

[45]  M. Frittelli The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets , 2000 .

[46]  Paul Embrechts,et al.  Actuarial versus Financial Pricing of Insurance , 2000 .

[47]  Vicky Henderson,et al.  Real options with constant relative risk aversion , 2002 .

[48]  Thaleia Zariphopoulou,et al.  Pricing Dynamic Insurance Risks Using the Principle of Equivalent Utility , 2002 .

[49]  I. Csiszár $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .

[50]  Peter Grandits,et al.  On the minimal entropy martingale measure , 2002 .

[51]  D. Duffie,et al.  Continuous-time security pricing: A utility gradient approach , 1994 .