Entanglement distribution over quantum code-division multiple-access networks

We present a method for quantum entanglement distribution over a so-called code-division multiple-access network, in which two pairs of users share the same quantum channel to transmit information. The main idea of this method is to use different broadband chaotic phase shifts, generated by electro-optic modulators and chaotic Colpitts circuits, to encode the information-bearing quantum signals coming from different users and then recover the masked quantum signals at the receiver side by imposing opposite chaotic phase shifts. The chaotic phase shifts given to different pairs of users are almost uncorrelated due to the randomness of chaos and thus the quantum signals from different pair of users can be distinguished even when they are sent via the same quantum channel. It is shown that two maximally entangled states can be generated between two pairs of users by our method mediated by bright coherent lights, which can be more easily implemented in experiments compared with single-photon lights. Our method is robust under the channel noises if only the decay rates of the information-bearing fields induced by the channel noises are not quite high. Our study opens up new perspectives for addressing and transmitting quantum information in future quantum networks.

[1]  Shengwang Du,et al.  Electro-optic modulation of single photons. , 2008, Physical review letters.

[2]  J. Raimond,et al.  Quantum Memory with a Single Photon in a Cavity , 1997 .

[3]  Masahide Sasaki,et al.  High-speed wavelength-division multiplexing quantum key distribution system. , 2012, Optics letters.

[4]  M. Lukin,et al.  Atomic Memory for Correlated Photon States , 2003, Science.

[5]  Pawel Horodecki,et al.  Purely quantum superadditivity of classical capacities of quantum multiple access channels. , 2009, Physical review letters.

[6]  F. Bussières,et al.  Entanglement and Wavelength Division Multiplexing for Quantum Cryptography Networks , 2004 .

[7]  Shota Yokoyama,et al.  Ultra-large-scale continuous-variable cluster states multiplexed in the time domain , 2013, Nature Photonics.

[8]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[9]  H. Kimble,et al.  Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks , 2007, Science.

[10]  David Finkel Book review: Multiple Access Protocols: Performance and Analysis by Raphael Rom and Moshe Sidi (Springer-Verlag, 1990) , 1991, PERV.

[11]  P. Horodecki,et al.  Quantum channel capacities: Multiparty communication , 2006 .

[12]  C. Fabre,et al.  Wavelength-multiplexed quantum networks with ultrafast frequency combs , 2013, Nature Photonics.

[13]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[14]  Pedro Chamorro-Posada,et al.  Quantum Spread Spectrum Multiple Access , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Xin-You Lü,et al.  Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms , 2008 .

[16]  M. Hayashi,et al.  Quantum information with Gaussian states , 2007, 0801.4604.

[17]  Li Liu,et al.  A quantum search based signal detection for MIMO-OFDM systems , 2011, 2011 18th International Conference on Telecommunications.

[18]  P. Townsend,et al.  Quantum key distribution on a 10Gb/s WDM-PON , 2010 .

[19]  N. Gisin,et al.  Quantum cryptography , 1998 .

[20]  Graeme Smith,et al.  Quantum Communication with Zero-Capacity Channels , 2008, Science.

[21]  Mika A. Sillanpää,et al.  Coherent quantum state storage and transfer between two phase qubits via a resonant cavity , 2007, Nature.

[22]  Louis Frenzel Principles of Electronic Communication Systems , 1997 .

[23]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[24]  M. Lukin Colloquium: Trapping and manipulating photon states in atomic ensembles , 2003 .

[25]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[26]  Kae Nemoto,et al.  Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light , 2006 .

[27]  Nicolas Gisin,et al.  Quantum communication , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[28]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[29]  Michael Peter Kennedy Chaos in the Colpitts oscillator , 1994 .

[30]  P. Townsend Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing , 1997 .

[31]  Nicolas Godbout,et al.  Multiuser quantum key distribution using wavelength division multiplexing , 2003, Other Conferences.

[32]  Franco Nori,et al.  Quantum Zeno switch for single-photon coherent transport , 2008, 0812.2151.

[33]  J. Laurat,et al.  Conditional control of the quantum states of remote atomic memories for quantum networking , 2006 .

[34]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[35]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[36]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[37]  Franco Nori,et al.  Quantum internet using code division multiple access , 2012, Scientific Reports.

[38]  Raphael Rom,et al.  Multiple Access Protocols: Performance and Analysis , 1990, SIGMETRICS Perform. Evaluation Rev..

[39]  M. Anandan,et al.  OFDM for frequency coded quantum key distribution , 2012, 2012 International Conference on Fiber Optics and Photonics (PHOTONICS).

[40]  Lian-Ao Wu,et al.  Nonperturbative leakage elimination operators and control of a three-level system. , 2015, Physical review letters.

[41]  J. Cirac,et al.  Entanglement percolation in quantum networks , 2006, quant-ph/0612167.

[42]  M. Tsang Cavity quantum electro-optics , 2010, 1003.0116.

[43]  Quantum spread spectrum communication , 2010 .

[44]  D. Matsukevich,et al.  Quantum State Transfer Between Matter and Light , 1999, Science.

[45]  B. Altshuler,et al.  Decoherence in qubits due to low-frequency noise , 2009, 0904.4597.

[46]  W. Munro,et al.  Hybrid quantum repeater using bright coherent light. , 2005, Physical Review Letters.

[47]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[48]  Pedro Chamorro-Posada,et al.  Quantum multiplexing with optical coherent states , 2009, Quantum Inf. Comput..

[49]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[50]  Lian-Ao Wu,et al.  Deterministic chaos can act as a decoherence suppressor , 2011, 1101.3194.

[51]  Mohsen Razavi,et al.  Multiple-Access Quantum Key Distribution Networks , 2011, IEEE Transactions on Communications.

[52]  V. Ipatov Spread Spectrum and CDMA: Principles and Applications , 2005 .

[53]  Ting Yu,et al.  Non-Markovian relaxation of a three-level system: quantum trajectory approach. , 2010, Physical review letters.

[54]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[55]  T. Wilk,et al.  Single-Atom Single-Photon Quantum Interface , 2007, Science.

[56]  Christopher Monroe,et al.  Quantum Networks with Trapped Ions , 2007 .

[57]  M. Lukin,et al.  Storage of light in atomic vapor. , 2000, Physical Review Letters.

[58]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[59]  Franco Nori,et al.  Two-level systems driven by large-amplitude fields , 2007 .

[60]  L. X. Ran,et al.  Microwave Chaotic Colpitts Oscillator: Design, Implementation and Applications , 2006 .