3D morphology-based clustering and simulation of human pyramidal cell dendritic spines

The dendritic spines of pyramidal neurons are the targets of most excitatory synapses in the cerebral cortex. They have a wide variety of morphologies, and their morphology appears to be critical from the functional point of view. To further characterize dendritic spine geometry, we used in this paper over 7,000 individually 3D reconstructed dendritic spines from human cortical pyramidal neurons to group dendritic spines using model-based clustering. This approach uncovered six separate groups of human dendritic spines. To better understand the differences between these groups, the discriminative characteristics of each group were identified as a set of rules. Model-based clustering was also useful for simulating accurate 3D virtual representations of spines that matched the morphological definitions of each cluster. This mathematical approach could provide a useful tool for theoretical predictions on the functional features of human pyramidal neurons based on the morphology of dendritic spines.

[1]  J. Morrison,et al.  The aging brain: morphomolecular senescence of cortical circuits , 2004, Trends in Neurosciences.

[2]  William W. Cohen Fast Effective Rule Induction , 1995, ICML.

[3]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[4]  A. Zewail,et al.  Visualization of carrier dynamics in p(n)-type GaAs by scanning ultrafast electron microscopy , 2014, Proceedings of the National Academy of Sciences.

[5]  U. Nägerl,et al.  Spine neck plasticity regulates compartmentalization of synapses , 2014, Nature Neuroscience.

[6]  Rafael Yuste,et al.  Ultrastructure of Dendritic Spines: Correlation Between Synaptic and Spine Morphologies , 2007, Front. Neurosci..

[7]  Geoffrey J. McLachlan,et al.  Mixture models : inference and applications to clustering , 1989 .

[8]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[9]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[10]  Rafael Yuste,et al.  From form to function: calcium compartmentalization in dendritic spines , 2000, Nature Neuroscience.

[11]  G. Elston,et al.  The Pyramidal Cell in Cognition: A Comparative Study in Human and Monkey , 2001, The Journal of Neuroscience.

[12]  Rafael Yuste,et al.  Activity-dependent dendritic spine neck changes are correlated with synaptic strength , 2014, Proceedings of the National Academy of Sciences.

[13]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[14]  Roberto Araya Input transformation by dendritic spines of pyramidal neurons , 2014, Front. Neuroanat..

[15]  Sandeep Patil,et al.  Voxel-based representation, display and thickness analysis of intricate shapes , 2005, Ninth International Conference on Computer Aided Design and Computer Graphics (CAD-CG'05).

[16]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[17]  J. Changeux,et al.  Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors , 2010, Proceedings of the National Academy of Sciences.

[18]  Guy Eyal,et al.  Unique membrane properties and enhanced signal processing in human neocortical neurons , 2016, eLife.

[19]  Laura Petrosini,et al.  Layer and regional effects of environmental enrichment on the pyramidal neuron morphology of the rat , 2009, Neurobiology of Learning and Memory.

[20]  Urit Gordon,et al.  Plasticity Compartments in Basal Dendrites of Neocortical Pyramidal Neurons , 2006, The Journal of Neuroscience.

[21]  K. Harris,et al.  Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  J. Morrison,et al.  Selective Changes in Thin Spine Density and Morphology in Monkey Prefrontal Cortex Correlate with Aging-Related Cognitive Impairment , 2010, The Journal of Neuroscience.

[23]  Jun Noguchi,et al.  Structural dynamics of dendritic spines in memory and cognition , 2010, Trends in Neurosciences.

[24]  R. Yuste,et al.  Developmental regulation of spine motility in the mammalian central nervous system. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[26]  I. Módy,et al.  Synapse-specific contribution of the variation of transmitter concentration to the decay of inhibitory postsynaptic currents. , 2001, Biophysical journal.

[27]  Rafael Yuste,et al.  Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions. , 2013, Cerebral cortex.

[28]  J. DeFelipe,et al.  Pericellular Innervation of Neurons Expressing Abnormally Hyperphosphorylated Tau in the Hippocampal Formation of Alzheimer's Disease Patients , 2010, Front. Neuroanat..

[29]  Remco C. Veltkamp,et al.  A survey of content based 3D shape retrieval methods , 2004, Proceedings Shape Modeling Applications, 2004..

[30]  M. Segal Dendritic spines: Morphological building blocks of memory , 2017, Neurobiology of Learning and Memory.

[31]  Dariusz Plewczynski,et al.  Computational Approach to Dendritic Spine Taxonomy and Shape Transition Analysis , 2016, bioRxiv.

[32]  KM Harris,et al.  Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  U. Valentin Nägerl,et al.  Dendritic Spines as Tunable Regulators of Synaptic Signals , 2016, Front. Psychiatry.

[34]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[35]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[36]  R. Yuste,et al.  Cortical area and species differences in dendritic spine morphology , 2002, Journal of neurocytology.

[37]  E. Fifková,et al.  Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation , 1975, Experimental Neurology.

[38]  A. Peters,et al.  The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. , 1970, The American journal of anatomy.

[39]  L. Garey Brodmann's localisation in the cerebral cortex , 1999 .

[40]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[41]  Wei-Chen Chen,et al.  MixSim: An R Package for Simulating Data to Study Performance of Clustering Algorithms , 2012 .

[42]  G. Elston,et al.  The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. , 1997, Cerebral cortex.

[43]  Frank P. Ferrie,et al.  A Note on Metric Properties for Some Divergence Measures: The Gaussian Case , 2012, ACML.

[44]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[45]  A. Matus,et al.  Actin-based plasticity in dendritic spines. , 2000, Science.

[46]  K. Svoboda,et al.  Experience-dependent structural synaptic plasticity in the mammalian brain , 2009, Nature Reviews Neuroscience.

[47]  Rafael Yuste,et al.  Spine Motility Phenomenology, Mechanisms, and Function , 2002, Neuron.

[48]  Elly Nedivi,et al.  Spine Dynamics: Are They All the Same? , 2017, Neuron.

[49]  Müjdat Çetin,et al.  Dendritic Spine Shape Analysis: A Clustering Perspective , 2016, ECCV Workshops.

[50]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[51]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[52]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[53]  Joseph L. Zinnes,et al.  Theory and Methods of Scaling. , 1958 .

[54]  Bartlett W. Mel,et al.  Dendrites: bug or feature? , 2003, Current Opinion in Neurobiology.

[55]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[56]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[57]  Ranjan Maitra,et al.  Simulating Data to Study Performance of Finite Mixture Modeling and Clustering Algorithms , 2010 .

[58]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .