LETTER TO THE EDITOR: Random walks and random fixed-point free involutions

A bijection is given between fixed-point free involutions of {1,2,...,2N} with maximum decreasing subsequence size 2p and two classes of vicious (non-intersecting) random walker configurations confined to the half-line lattice points l≥1. In one class of walker configurations the maximum displacement of the rightmost walker is p. Because the scaled distribution of the maximum decreasing subsequence size is known to be in the soft edge GOE (random real symmetric matrices) universality class, the same holds true for the scaled distribution of the maximum displacement of the rightmost walker.

[1]  C. Krattenthaler,et al.  Vicious walkers, friendly walkers and Young tableaux: II. With a wall , 2000, cond-mat/0006367.

[2]  P. Forrester Painlevé transcendent evaluation of the scaled distribution of the smallest eigenvalue in the Laguerre orthogonal and symplectic ensembles , 2000, nlin/0005064.

[3]  C. Tracy,et al.  Limit Theorems for Height Fluctuations in a Class of Discrete Space and Time Growth Models , 2000, math/0005133.

[4]  J. Baik Random vicious walks and random matrices , 2000, math/0001022.

[5]  Spohn,et al.  Universal distributions for growth processes in 1+1 dimensions and random matrices , 1999, Physical review letters.

[6]  P. Moerbeke,et al.  Random Matrices and Random Permutations , 2000 .

[7]  J. Baik,et al.  Symmetrized Random Permutations , 1999, math/9910019.

[8]  P. Forrester Random walks and random permutations , 1999, math/9907037.

[9]  K. Johansson Discrete orthogonal polynomial ensembles and the Plancherel measure. , 1999, math/9906120.

[10]  J. Baik,et al.  Algebraic aspects of increasing subsequences , 1999, math/9905083.

[11]  J. Baik,et al.  The asymptotics of monotone subsequences of involutions , 1999, math/9905084.

[12]  G. Olshanski,et al.  Asymptotics of Plancherel measures for symmetric groups , 1999, math/9905032.

[13]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[14]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[15]  Anthony J. Guttmann,et al.  Vicious walkers and Young tableaux I: without walls , 1998 .

[16]  Eric M. Rains,et al.  Increasing Subsequences and the Classical Groups , 1998, Electron. J. Comb..

[17]  C. Tracy,et al.  On orthogonal and symplectic matrix ensembles , 1995, solv-int/9509007.

[18]  P. Forrester The spectrum edge of random matrix ensembles , 1993 .

[19]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9210074.

[20]  P. Forrester Finite-size corrections to the free energy of Coulomb systems with a periodic boundary condition , 1991 .

[21]  P. Forrester Exact results for vicious walker models of domain walls , 1991 .

[22]  Sheila Sundaram,et al.  The Cauchy identity for Sp(2n) , 1990, J. Comb. Theory, Ser. A.

[23]  Peter J. Forrester Probability of survival for vicious walkers near a cliff , 1989 .

[24]  Robert A. Proctor Odd symplectic groups , 1988 .