Variable-precision rendering

We propose the idea of using variable-precision geometry transformations and lighting to accelerate 3D graphics rendering. Multiresolution approaches reduce the numberof primitives to be rendered; our approach complements the multiresolution techniques as it reduces theprecisionof each graphics primitive. Our method relates the minimum number of bits of accuracy required in the input data to achieve a desired accuracy in the display output. We achieve speedup by taking advantage of (a) SIMD parallelism for arithmetic operations, now increasingly common on modern processors, and (b) spatial-temporal coherence in frame-to-frame transformations and lighting. We show the results of our method on datasets from several application domains including laser-scanned, procedural, and mechanical CAD datasets. CR Categories: I.3.3 [Computer Graphics]: Picture/Image Generation—Viewing algorithms; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Hierarchy and geometric transformations; I.3.6 [Computer Graphics]: Methodology and Techniques—Graphics data structures and data types. Additional

[1]  Mike M. Chow Optimized geometry compression for real-time rendering , 1997 .

[2]  Valerio Pascucci,et al.  Progressive compression and transmission of arbitrary triangular meshes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[3]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[4]  Victor J. Milenkovic,et al.  Finding compact coordinate representations for polygons and polyhedra , 1990, SCG '90.

[5]  Jihad El-Sana,et al.  Adaptive Real-Time Level-of-Detail-Based Rendering for Polygonal Models , 1997, IEEE Trans. Vis. Comput. Graph..

[6]  Hansong Zhang,et al.  Fast backface culling using normal masks , 1997, SI3D.

[7]  Hugues Hoppe,et al.  View-dependent refinement of progressive meshes , 1997, SIGGRAPH.

[8]  Valerio Pascucci,et al.  Single Resolution Compression of Arbitrary Triangular Meshes with Properties , 1999, Data Compression Conference.

[9]  Jarek Rossignac,et al.  Optimal bit allocation in compressed 3D models , 1999, Comput. Geom..

[10]  Kokichi Sugihara,et al.  On Finite-Precision Representations of Geometric Objects , 1989, J. Comput. Syst. Sci..

[11]  Uri C. Weiser,et al.  MMX technology extension to the Intel architecture , 1996, IEEE Micro.

[12]  Donald P. Greenberg,et al.  Toward a psychophysically-based light reflection model for image synthesis , 2000, SIGGRAPH.

[13]  Renato Pajarola,et al.  SQUEEZE: fast and progressive decompression of triangle meshes , 2000, Proceedings Computer Graphics International 2000.

[14]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.

[15]  Renato Pajarola,et al.  Compressed Progressive Meshes , 2000, IEEE Trans. Vis. Comput. Graph..

[16]  Chee-Keng Yap,et al.  A core library for robust numeric and geometric computation , 1999, SCG '99.

[17]  Zhigang Xiang,et al.  Color image quantization by minimizing the maximum intercluster distance , 1997, TOGS.

[18]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling: An Introduction , 1989 .

[19]  Jarek Rossignac,et al.  Multi-resolution 3D approximations for rendering complex scenes , 1993, Modeling in Computer Graphics.

[20]  Stephen M Pizer,et al.  To compute numerically: Concepts and strategies (Little, Brown computer systems series) , 1983 .

[21]  Christopher J. Van Wyk,et al.  Static analysis yields efficient exact integer arithmetic for computational geometry , 1996, TOGS.

[22]  Barry N. Taylor,et al.  Guidelines for Evaluating and Expressing the Uncertainty of Nist Measurement Results , 2017 .

[23]  Jarek Rossignac,et al.  Topologically exact evaluation of polyhedra defined in CSG with loose primitives , 1996, Comput. Graph. Forum.

[24]  Stephen M. Pizer,et al.  To compute numerically : concepts and strategies , 1983 .

[25]  Paul S. Heckbert Color image quantization for frame buffer display , 1982, SIGGRAPH.

[26]  Valerio Pascucci,et al.  Single resolution compression of arbitrary triangular meshes with properties , 1999, Comput. Geom..

[27]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling , 1989 .

[28]  David Levin,et al.  Progressive Compression of Arbitrary Triangular Meshes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[29]  Gabriel Taubin,et al.  Progressive forest split compression , 1998, SIGGRAPH.

[30]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[31]  Gabriel Taubin,et al.  Geometric compression through topological surgery , 1998, TOGS.

[32]  Steven Fortune Vertex-Rounding a Three-Dimensional Polyhedral Subdivision , 1999, Discret. Comput. Geom..

[33]  David P. Luebke,et al.  View-dependent simplification of arbitrary polygonal environments , 1997, SIGGRAPH.

[34]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.