An exponential-type kernel robust regression model for interval-valued variables
暂无分享,去创建一个
[1] Phil Diamond,et al. Fuzzy least squares , 1988, Inf. Sci..
[2] J. Mercer. Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .
[3] Yongho Jeon,et al. A resampling approach for interval‐valued data regression , 2012, Stat. Anal. Data Min..
[4] Bernhard Schölkopf,et al. Learning with kernels , 2001 .
[5] Renata M. C. R. de Souza,et al. A robust method for linear regression of symbolic interval data , 2010, Pattern Recognit. Lett..
[6] Ruoning Xu,et al. Multidimensional least-squares fitting with a fuzzy model , 2001, Fuzzy Sets Syst..
[7] Georg Peters. Fuzzy linear regression with fuzzy intervals , 1994 .
[8] Francisco de A. T. de Carvalho,et al. A robust regression method based on exponential-type kernel functions , 2017, Neurocomputing.
[9] Renata M. C. R. de Souza,et al. Robust regression with application to symbolic interval data , 2013, Eng. Appl. Artif. Intell..
[10] Francisco de A. T. de Carvalho,et al. Centre and Range method for fitting a linear regression model to symbolic interval data , 2008, Comput. Stat. Data Anal..
[11] Shitong Wang,et al. Dependency between degree of fit and input noise in fuzzy linear regression using non-symmetric fuzzy triangular coefficients , 2007, Fuzzy Sets Syst..
[12] P. Brito,et al. Modelling interval data with Normal and Skew-Normal distributions , 2012 .
[13] Ebrahim Nasrabadi,et al. Fuzzy linear regression models with least square errors , 2005, Appl. Math. Comput..
[14] V. Yohai,et al. Robust Statistics: Theory and Methods , 2006 .
[15] Renata M. C. R. de Souza,et al. A weighted multivariate Fuzzy C-Means method in interval-valued scientific production data , 2014, Expert Syst. Appl..
[16] Nello Cristianini,et al. Kernel Methods for Pattern Analysis , 2003, ICTAI.
[17] Ebrahim Nasrabadi,et al. Robust Fuzzy Regression Analysis Using Neural Networks , 2008, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[18] Peng Hao,et al. Constrained center and range joint model for interval-valued symbolic data regression , 2017, Comput. Stat. Data Anal..
[19] Clifford M. Hurvich,et al. Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion , 1998 .
[20] L. Billard,et al. Regression Analysis for Interval-Valued Data , 2000 .
[21] Changwon Lim,et al. Interval-valued data regression using nonparametric additive models , 2016 .
[22] Gunnar Rätsch,et al. An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.
[23] Renata M. C. R. de Souza,et al. Interval kernel regression , 2014, Neurocomputing.
[24] L. Billard,et al. From the Statistics of Data to the Statistics of Knowledge , 2003 .
[25] James J. Buckley,et al. Fuzzy regression using least absolute deviation estimators , 2007, Soft Comput..
[26] Yuan Wei,et al. Interval-valued data regression using partial linear model , 2017 .
[27] Paolo Giordani,et al. Lasso-constrained regression analysis for interval-valued data , 2015, Adv. Data Anal. Classif..
[28] V. Yohai. HIGH BREAKDOWN-POINT AND HIGH EFFICIENCY ROBUST ESTIMATES FOR REGRESSION , 1987 .
[29] Pierpaolo D'Urso,et al. A least-squares approach to fuzzy linear regression analysis , 2000 .
[30] Eufrásio de Andrade Lima Neto,et al. Regression model for interval-valued variables based on copulas , 2015 .
[31] Pierpaolo D'Urso,et al. Least squares estimation of a linear regression model with LR fuzzy response , 2006, Comput. Stat. Data Anal..
[32] G. González-Rivera,et al. Constrained Regression for Interval-Valued Data , 2013 .
[33] Pierpaolo D’Urso,et al. Weighted Least Squares and Least Median Squares estimation for the fuzzy linear regression analysis , 2013 .
[34] Renata M. C. R. de Souza,et al. Quantile regression of interval-valued data , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).
[35] Francisco de A. T. de Carvalho,et al. Constrained linear regression models for symbolic interval-valued variables , 2010, Comput. Stat. Data Anal..
[36] G. Cordeiro,et al. Bivariate symbolic regression models for interval-valued variables , 2011 .
[37] Pierpaolo D'Urso,et al. Linear regression analysis for fuzzy = crisp input and fuzzy = crisp output data , 2015 .
[38] Seung-Hoe Choi,et al. LEAST ABSOLUTE DEVIATION ESTIMATOR IN FUZZY REGRESSION , .
[39] Miin-Shen Yang,et al. Fuzzy least-squares linear regression analysis for fuzzy input-output data , 2002, Fuzzy Sets Syst..
[40] Zhi-gang Su,et al. Parameter estimation from interval-valued data using the expectation-maximization algorithm , 2015 .
[41] Paula Brito,et al. Off the beaten track: A new linear model for interval data , 2017, Eur. J. Oper. Res..
[42] Yongho Jeon,et al. A Nonparametric Kernel Approach to Interval-Valued Data Analysis , 2015, Technometrics.
[43] Peter J. Rousseeuw,et al. Robust regression and outlier detection , 1987 .
[44] Ebrahim Nasrabadi,et al. An LP-Based Approach to Outliers Detection in Fuzzy Regression Analysis , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[45] Ping-Teng Chang,et al. A generalized fuzzy weighted least-squares regression , 1996, Fuzzy Sets Syst..
[46] Nello Cristianini,et al. An introduction to Support Vector Machines , 2000 .