Intricate response dynamics enhances stimulus discrimination in the resource-limited C. elegans chemosensory system

Sensory systems evolved intricate designs to accurately encode perplexing environments. However, this encoding task may become particularly challenging for animals harboring a small number of sensory neurons. Here, we studied how the compact resource-limited chemosensory system of C. elegans uniquely encodes a range of chemical stimuli. We find that each stimulus is encoded using a small and unique subset of neurons, where only a portion of the encoding neurons sense the stimulus directly, and the rest are recruited via inter-neuronal communication. Furthermore, while most neurons show stereotypical response dynamics, some neurons exhibit versatile dynamics that are either stimulus specific or network-activity dependent. Notably, it is the collective dynamics of all responding neurons which provides valuable information that ultimately enhances stimulus identification, particularly when required to discriminate between closely-related stimuli. Together, these findings demonstrate how a compact and resource-limited chemosensory system can efficiently encode and discriminate a diverse range of chemical stimuli.

[1]  Aravinthan D. T. Samuel,et al.  Connectomes across development reveal principles of brain maturation , 2021, Nature.

[2]  D. M. Ferkey,et al.  Chemosensory signal transduction in Caenorhabditis elegans , 2021, Genetics.

[3]  Aravinthan D. T. Samuel,et al.  NeuroPAL: A Multicolor Atlas for Whole-Brain Neuronal Identification in C. elegans , 2020, Cell.

[4]  Steven J. Cook,et al.  Molecular topography of an entire nervous system , 2020, Cell.

[5]  Andrew M Leifer,et al.  Measuring and modeling whole-brain neural dynamics in Caenorhabditis elegans , 2020, Current Opinion in Neurobiology.

[6]  Eugene Jennifer Jin,et al.  Gap junctions: historical discoveries and new findings in the Caenorhabditis elegans nervous system , 2020, Biology Open.

[7]  Saket Navlakha,et al.  Neural network features distinguish chemosensory stimuli in Caenorhabditis elegans , 2020, bioRxiv.

[8]  Stefano Panzeri,et al.  Manipulating synthetic optogenetic odors reveals the coding logic of olfactory perception , 2019, Science.

[9]  Jicong Fan,et al.  Factor Group-Sparse Regularization for Efficient Low-Rank Matrix Recovery , 2019, NeurIPS.

[10]  A. Zaslaver,et al.  Irrational behavior in C. elegans arises from asymmetric modulatory effects within single sensory neurons , 2019, Nature Communications.

[11]  Yi Wang,et al.  Whole-animal connectomes of both Caenorhabditis elegans sexes , 2019, Nature.

[12]  E, F , 2019, Woleaian-English Dictionary.

[13]  Nick S. Jones,et al.  catch22: CAnonical Time-series CHaracteristics , 2019, Data Mining and Knowledge Discovery.

[14]  O. Hobert,et al.  The CeNGEN Project: The Complete Gene Expression Map of an Entire Nervous System , 2018, Neuron.

[15]  Rotem Ruach,et al.  Concerted pulsatile and graded neural dynamics enables efficient chemotaxis in C. elegans , 2018, Nature Communications.

[16]  Nektarios Tavernarakis,et al.  Multimodal sensory processing in Caenorhabditis elegans , 2018, Open Biology.

[17]  Gabriela O. Serrano,et al.  A primacy code for odor identity , 2017, Nature Communications.

[18]  M. Nitabach,et al.  Multisensory integration in C. elegans , 2017, Current Opinion in Neurobiology.

[19]  Takayuki Teramoto,et al.  Accurate Automatic Detection of Densely Distributed Cell Nuclei in 3D Space , 2016, PLoS Comput. Biol..

[20]  Sreekanth H. Chalasani,et al.  Circuit mechanisms encoding odors and driving aging-associated behavioral declines in Caenorhabditis elegans , 2015, eLife.

[21]  Jeffrey P. Nguyen,et al.  Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans , 2015, Proceedings of the National Academy of Sciences.

[22]  Alon Zaslaver,et al.  Hierarchical sparse coding in the sensory system of Caenorhabditis elegans , 2015, Proceedings of the National Academy of Sciences.

[23]  Christian C. Naus,et al.  Gap junctions in C. elegans , 2014, Front. Physiol..

[24]  Cori Bargmann,et al.  Temporal Responses of C. elegans Chemosensory Neurons Are Preserved in Behavioral Dynamics , 2014, Neuron.

[25]  R. Prevedel,et al.  Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light , 2013, Nature Methods.

[26]  Sreekanth H. Chalasani,et al.  Neuropeptide signaling remodels chemosensory circuit composition in Caenorhabditis elegans , 2013, Nature Neuroscience.

[27]  Christopher A Jackson,et al.  The C. elegans cGMP-Dependent Protein Kinase EGL-4 Regulates Nociceptive Behavioral Sensitivity , 2013, PLoS genetics.

[28]  Cornelia I. Bargmann,et al.  Neuropeptide feedback modifies odor-evoked dynamics in C. elegans olfactory neurons , 2010, Nature Neuroscience.

[29]  Zeynep F. Altun,et al.  High resolution map of Caenorhabditis elegans gap junction proteins , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[30]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[31]  S. Lockery,et al.  Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis , 2008, Nature.

[32]  Sreekanth H. Chalasani,et al.  Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans , 2007, Nature.

[33]  Cori Bargmann,et al.  Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans , 2007, Nature Methods.

[34]  P. Sengupta Generation and modulation of chemosensory behaviors in C. elegans , 2007, Pflügers Archiv - European Journal of Physiology.

[35]  Cori Bargmann Chemosensation in C. elegans. , 2006, WormBook : the online review of C. elegans biology.

[36]  Cori Bargmann,et al.  C. elegans odour discrimination requires asymmetric diversity in olfactory neurons , 2001, Nature.

[37]  Cori Bargmann,et al.  Lateral Signaling Mediated by Axon Contact and Calcium Entry Regulates Asymmetric Odorant Receptor Expression in C. elegans , 1999, Cell.

[38]  R. Reed,et al.  Chemosensation: molecular mechanisms in worms and mammals. , 1999, Trends in genetics : TIG.

[39]  H. Horvitz,et al.  A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[40]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[41]  D. Small,et al.  A Proposed Model of a Flavor Modality , 2012 .