Uncovering axionlike particles in supernova gamma-ray spectra

A future Galactic Supernova (SN) explosion can lead to a gamma-ray signal induced by ultralight Axion-Like Particles (ALPs) thermally produced in the SN core and converted into high-energy photons in the Galactic magnetic field. The detection of such a signal is in the reach of the Large Area Telescope aboard the \emph{Fermi} Gamma-Ray Space Telescope. The observation of gamma-ray emission from a future SN has a sensitivity to $g_{a\gamma}\gtrsim 4\times 10^{-13}$ GeV$^{-1}$ for a SN at fiducial distance of $10$ kpc and would allow us to reconstruct the ALP-photon coupling within a factor of $\sim2$, mainly due to the uncertainties on the modeling of the Galactic magnetic field.

[1]  M. Giannotti,et al.  Getting the most on supernova axions , 2023, Physical Review D.

[2]  M. C. Marsh,et al.  Investigating the gamma-ray burst from decaying MeV-scale axion-like particles produced in supernova explosions , 2023, 2304.01060.

[3]  D. Marsh,et al.  Axion Star Explosions: A New Source for Axion Indirect Detection , 2023, 2302.10206.

[4]  S. Hoof,et al.  Updated constraints on axion-like particles from temporal information in supernova SN1987A gamma-ray data , 2022, Journal of Cosmology and Astroparticle Physics.

[5]  M. Giannotti,et al.  Protoneutron stars as cosmic factories for massive axionlike particles , 2022, Physical Review D.

[6]  C. Weniger,et al.  Novel Constraints on Axions Produced in Pulsar Polar Cap Cascades , 2022, 2209.09917.

[7]  B. Safdi,et al.  Upper limit on the axion-photon coupling from magnetic white dwarf polarization , 2022, Physical Review D.

[8]  K. Kotake,et al.  3D template-based Fermi -LAT constraints on the diffuse supernova axion-like particle background , 2021, Physical Review D.

[9]  G. Raffelt,et al.  Muonic Boson Limits: Supernova Redux , 2021, 2109.03244.

[10]  M. C. Marsh,et al.  Fourier formalism for relativistic axion-photon conversion with astrophysical applications , 2021, Physical Review D.

[11]  M. Giannotti,et al.  Turbulent axion-photon conversions in the Milky Way , 2021, Physical Review D.

[12]  J. I. Crespo-Anadón,et al.  SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy , 2020, New Journal of Physics.

[13]  M. Giannotti,et al.  Enhanced Supernova Axion Emission and Its Implications. , 2020, Physical review letters.

[14]  M. Giannotti,et al.  Bounds on axionlike particles from the diffuse supernova flux , 2020, 2008.11741.

[15]  B. Safdi,et al.  X-Ray Searches for Axions from Super Star Clusters. , 2020, Physical review letters.

[16]  D. Mota,et al.  Solitons in the dark: First approach to non-linear structure formation with fuzzy dark matter , 2020, Astronomy & Astrophysics.

[17]  M. Baldi,et al.  Scaling relations of fuzzy dark matter haloes – I. Individual systems in their cosmological environment , 2020, 2007.01316.

[18]  M. Meyer,et al.  Search for Axionlike-Particle-Induced Prompt γ-Ray Emission from Extragalactic Core-Collapse Supernovae with the Fermi Large Area Telescope. , 2020, Physical review letters.

[19]  S. Veilleux,et al.  Astrophysical Limits on Very Light Axion-like Particles from Chandra Grating Spectroscopy of NGC 1275 , 2019, The Astrophysical Journal.

[20]  T. Fischer,et al.  Improved axion emissivity from a supernova via nucleon-nucleon bremsstrahlung , 2019, Journal of Cosmology and Astroparticle Physics.

[21]  D. Kasen,et al.  Observable signatures of dark photons from supernovae , 2019, Journal of High Energy Physics.

[22]  L. Hernquist,et al.  Galaxy formation with BECDM - I. Turbulence and relaxation of idealized haloes. , 2017, Monthly notices of the Royal Astronomical Society.

[23]  J. Jaeckel,et al.  Decay photons from the axionlike particles burst of type II supernovae , 2017, Physical Review D.

[24]  M. Giannotti,et al.  Fermi Large Area Telescope as a Galactic Supernovae Axionscope. , 2016, Physical review letters.

[25]  C. A. Oxborrow,et al.  Planck intermediate results - XLVII. Planck constraints on reionization history , 2016, 1605.03507.

[26]  V. Brdar,et al.  Production of keV sterile neutrinos in supernovae: New constraints and gamma-ray observables , 2016, Physical Review D.

[27]  R. B. Barreiro,et al.  Planck intermediate results. XLII. Large-scale Galactic magnetic fields , 2016, 1601.00546.

[28]  G. W. Pratt,et al.  Planck 2015 results - VI. LFI mapmaking , 2015, 1502.01585.

[29]  T. Fischer,et al.  Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles , 2014, 1410.3747.

[30]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[31]  A. Mirizzi,et al.  Hardening of TeV gamma spectrum of AGNs in galaxy clusters by conversions of photons into axion-like particles , 2012, 1207.0776.

[32]  G. Farrar,et al.  A NEW MODEL OF THE GALACTIC MAGNETIC FIELD , 2012, 1204.3662.

[33]  A. Angelis,et al.  Relevance of axion-like particles for very-high-energy astrophysics , 2011, 1106.1132.

[34]  K. Newton-McGee,et al.  DERIVING THE GLOBAL STRUCTURE OF THE GALACTIC MAGNETIC FIELD FROM FARADAY ROTATION MEASURES OF EXTRAGALACTIC SOURCES , 2011, 1103.0814.

[35]  K. Newton-McGee,et al.  Remarkable Symmetries in the Milky Way Disc's Magnetic Field , 2009, Publications of the Astronomical Society of Australia.

[36]  F. Halzen,et al.  Reconstructing the supernova bounce time with neutrinos in IceCube , 2009, 0908.2317.

[37]  J. Chiang,et al.  THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION , 2009, 0902.1089.

[38]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[39]  G. Fuller,et al.  Heavy sterile neutrinos and supernova explosions , 2008, 0806.4273.

[40]  M. Halpern,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP1) Observations: Galactic Foreground Emission , 2008 .

[41]  A. Mirizzi,et al.  Signatures of axion-like particles in the spectra of TeV gamma-ray sources , 2007, 0704.3044.

[42]  O. E. Bronson Messer,et al.  A Finite Difference Representation of Neutrino Radiation Hydrodynamics for Spherically Symmetric General Relativistic Supernova Simulations , 2002 .

[43]  R. Cousins,et al.  A Unified Approach to the Classical Statistical Analysis of Small Signals , 1997, physics/9711021.

[44]  Massó,et al.  Gamma Rays from SN 1987A due to Pseudoscalar Conversion. , 1996, Physical review letters.

[45]  G. Raffelt,et al.  SN 1987A gamma-ray limits on the conversion of pseudoscalars , 1996, astro-ph/9605197.

[46]  L. Oberauer,et al.  Supernova bounds on neutrino radiative decays , 1993 .

[47]  Anthony Mezzacappa,et al.  A numerical method for solving the neutrino Boltzmann equation coupled to spherically symmetric stellar core collapse , 1993 .

[48]  L. Stodolsky,et al.  Mixing of the photon with low-mass particles. , 1988, Physical review. D, Particles and fields.

[49]  R. B. Barreiro,et al.  Planck 2015 results Special feature Planck 2015 results II . Low Frequency Instrument data processings , 2018 .