Polarity compensation in ultra-thin films of complex oxides: The case of a perovskite nickelate

We address the fundamental issue of growth of perovskite ultra-thin films under the condition of a strong polar mismatch at the heterointerface exemplified by the growth of a correlated metal LaNiO3 on the band insulator SrTiO3 along the pseudo cubic [111] direction. While in general the metallic LaNiO3 film can effectively screen this polarity mismatch, we establish that in the ultra-thin limit, films are insulating in nature and require additional chemical and structural reconstruction to compensate for such mismatch. A combination of in-situ reflection high-energy electron diffraction recorded during the growth, X-ray diffraction, and synchrotron based resonant X-ray spectroscopy reveal the formation of a chemical phase La2Ni2O5 (Ni2+) for a few unit-cell thick films. First-principles layer-resolved calculations of the potential energy across the nominal LaNiO3/SrTiO3 interface confirm that the oxygen vacancies can efficiently reduce the electric field at the interface.

[1]  D. Blank,et al.  Epitaxial oxide growth on polar (111) surfaces , 2011 .

[2]  N. Brookes,et al.  Structural and Electronic Reconstructions at the LaAlO3/SrTiO3 Interface , 2013, Advanced materials.

[3]  S. Prosandeev,et al.  Effect of polar discontinuity on the growth of LaNiO3/LaAlO3 superlattices , 2010, 1001.0814.

[4]  S. Okamoto,et al.  Possible interaction driven topological phases in (111) bilayers of LaNiO3 , 2011, 1109.1551.

[5]  F. Schäfers,et al.  Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures with hard x-ray photoelectron spectroscopy. , 2008, Physical review letters.

[6]  A. Demkov,et al.  Lattice distortion effects on topological phases in (LaNiO 3 ) 2 /(LaAlO 3 ) N heterostructures grown along the [111] direction , 2013, 1306.1002.

[7]  T. Ishikawa,et al.  Spectroscopic evidence for competing reconstructions in polar multilayers LaAlO3/LaVO3/LaAlO3. , 2009, Physical review letters.

[8]  A. Millis,et al.  Whither the oxide interface. , 2012, Nature materials.

[9]  H. Hwang,et al.  Polar discontinuity doping of the LaVO_{3}/SrTiO_{3} interface. , 2007, Physical review letters.

[10]  T. H. Geballe,et al.  Deposition of in-plane textured MgO on amorphous Si3N4 substrates by ion-beam-assisted deposition and comparisons with ion-beam-assisted deposited yttria-stabilized-zirconia , 1997 .

[11]  J. Chaloupka,et al.  Orbital order and possible superconductivity in LaNiO3/LaMO3 superlattices. , 2008, Physical review letters.

[12]  K. Held,et al.  Turning a nickelate Fermi surface into a cupratelike one through heterostructuring. , 2008, Physical review letters.

[13]  A. Ruegg,et al.  Topological insulators from complex orbital order in transition-metal oxides heterostructures , 2011, 1109.1297.

[14]  A. Fert,et al.  High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives. , 2007, Physical review letters.

[15]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[16]  J. Alonso,et al.  Preparation and crystal structure of the deficient perovskite LaNiO2.5, solved from neutron powder diffraction data , 1995 .

[17]  M. Gabay,et al.  Metal-insulator transition in ultrathin LaNiO3 films. , 2011, Physical review letters.

[18]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[19]  H. N. Lee,et al.  Oxygen-vacancy-induced orbital reconstruction of Ti ions at the interface of LaAlO3/SrTiO3 heterostructures: a resonant soft-X-ray scattering study. , 2013, Physical review letters.

[20]  Eberhard Goering,et al.  Orbital reflectometry of oxide heterostructures. , 2010, Nature materials.

[21]  B. Arey,et al.  Band alignment, built-in potential, and the absence of conductivity at the LaCrO3/SrTiO3(001) heterojunction. , 2011, Physical review letters.

[22]  X. Liu,et al.  Epitaxial stabilization of ultra thin films of electron doped manganites , 2014, 1403.7674.

[23]  M. Vallet‐Regí,et al.  Electronic structure and metal-insulator transition in LaNiO 3-δ , 2002 .

[24]  S. Prosandeev,et al.  Sub-monolayer nucleation and growth of complex oxide heterostructures at high supersaturation and rapid flux modulation , 2010, 1005.0570.

[25]  P J Ryan,et al.  Asymmetric orbital-lattice interactions in ultrathin correlated oxide films. , 2010, Physical review letters.

[26]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[27]  M. Bibes,et al.  Ultrathin oxide films and interfaces for electronics and spintronics , 2011 .

[28]  S. Okamoto Doped Mott insulators in (111) bilayers of perovskite transition-metal oxides with a strong spin-orbit coupling. , 2012, Physical review letters.

[29]  Acknowledgments , 2006, Molecular and Cellular Endocrinology.

[30]  R. Ramesh,et al.  Oxide interfaces: pathways to novel phenomena , 2012 .

[31]  M. Rozenberg,et al.  Orientational tuning of the Fermi sea of confined electrons at the SrTiO3 (110) and (111) surfaces , 2014, 1405.6898.

[32]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[33]  T. Merz,et al.  Depth-resolved subsurface defects in chemically etched SrTiO3 , 2009, 0903.1853.

[34]  David J. Smith,et al.  Oxygen vacancy-mediated room-temperature ferromagnetism in insulating cobalt-substituted SrTiO3 epitaxially integrated with silicon , 2013 .

[35]  Shuxiang Wu,et al.  Electrostatic Modulation of LaAlO3/SrTiO3 Interface Transport in an Electric Double‐Layer Transistor , 2014 .

[36]  R. Pentcheva,et al.  Orbital control in strained ultra-thin LaNiO3/LaAlO3 superlattices , 2010, 1008.1518.

[37]  S. Okamoto,et al.  Quantum confinement of Mott electrons in ultrathin LaNiO3/LaAlO3 superlattices , 2011, 1101.5581.

[38]  H.-U. Habermeier,et al.  Dimensionality Control of Electronic Phase Transitions in Nickel-Oxide Superlattices , 2011, Science.

[39]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[40]  D. Muller,et al.  Why some interfaces cannot be sharp , 2005, cond-mat/0510491.

[41]  P. Kelly,et al.  Polarity-induced oxygen vacancies at LaAlO3∕SrTiO3 interfaces , 2010, 1006.5146.

[42]  Ying Ran,et al.  Nearly flat band with Chern numberC=2on the dice lattice , 2011, 1109.3435.

[43]  S. Stølen,et al.  Topography of the potential energy hypersurface and criteria for fast-ion conduction in perovskite-related A2B2O5 oxides. , 2005, The journal of physical chemistry. B.

[44]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[45]  Sánchez,et al.  Metal-insulator transition in oxygen-deficient LaNiO3-x perovskites. , 1996, Physical review. B, Condensed matter.

[46]  S. Okamoto,et al.  Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures. , 2011, Nature communications.

[47]  Svein Stølen,et al.  Oxygen-deficient perovskites: linking structure, energetics and ion transport. , 2006, Physical chemistry chemical physics : PCCP.

[48]  A. Demkov,et al.  Electronic structure of (LaNiO$_3$)$_2$/(LaAlO$_3$)$_N$ heterostructures grown along [111] , 2012, 1204.0141.

[49]  V. Roddatis,et al.  Reconstruction of the polar interface between hexagonal LuFeO3 and intergrown Fe3O4 nanolayers , 2012, Scientific Reports.

[50]  L. Marrucci,et al.  Polar catastrophe and electronic reconstructions at the LaAlO 3 /SrTiO 3 interface: Evidence from optical second harmonic generation , 2009, 0901.3331.

[51]  X. Liu,et al.  Epitaxial growth of (111)-oriented LaAlO3/LaNiO3 ultra-thin superlattices , 2012, 1212.0590.

[52]  P. Levitz,et al.  Reduced forms of LaNiO3 perovskite. Part 1.—Evidence for new phases: La2Ni2O5 and LaNiO2 , 1983 .