Design of Reinforcement in Nano- and Microcomposites

The application of numerical homogenization and optimization in the design of micro- and nanocomposite reinforcement is presented. The influence of boundary conditions, form of a representative volume element, shape and distribution of reinforcement are distinguished as having the crucial influence on a design of the reinforcement. The paper also shows that, in the optimization problems, the distributions of any design variables can be expressed by n-dimensional curves. It applies not only to the tasks of optimizing the shape of the edge of the structure or its mid-surface but also dimensional optimization or topology/material optimization. It is shown that the design of reinforcement may be conducted in different ways and 2D approaches may be expanding to 3D cases.

[1]  H. L. Cox The elasticity and strength of paper and other fibrous materials , 1952 .

[2]  E. Hinton,et al.  A review of homogenization and topology opimization II—analytical and numerical solution of homogenization equations , 1998 .

[3]  J. Halpin Stiffness and Expansion Estimates for Oriented Short Fiber Composites , 1969 .

[4]  A. Muc,et al.  Free vibrations of carbon nanotubes with defects , 2013 .

[5]  Liang Gao,et al.  Topology optimization for multiscale design of porous composites with multi-domain microstructures , 2019, Computer Methods in Applied Mechanics and Engineering.

[6]  C. Sun,et al.  Prediction of composite properties from a representative volume element , 1996 .

[7]  K. Tserpes,et al.  Modeling of carbon nanotubes, graphene and their composites , 2014 .

[8]  A. Simone,et al.  Diameter-dependent elastic properties of carbon nanotube-polymer composites : Emergence of size effects from atomistic-scale simulations , 2017 .

[9]  G. Odegard,et al.  Multiscale modeling of carbon fiber/carbon nanotube/epoxy hybrid composites: Comparison of epoxy matrices , 2018, Composites Science and Technology.

[10]  Christophe Geuzaine,et al.  Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation , 2012 .

[11]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[12]  Tim Schmitz,et al.  Mechanics Of Composite Materials , 2016 .

[13]  A. Muc,et al.  Experimental Investigations of Compressed Sandwich Composite/Honeycomb Cylindrical Shells , 2018, Applied Composite Materials.

[14]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[15]  Q. Qin,et al.  Macro-Micro Theory on Multifield Coupling Behavior of Heterogeneous Materials , 2009 .

[16]  P. Suquet,et al.  Elements of Homogenization Theory for Inelastic Solid Mechanics, in Homogenization Techniques for Composite Media , 1987 .

[17]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[18]  George Stefanou,et al.  Homogenization of random heterogeneous media with inclusions of arbitrary shape modeled by XFEM , 2014 .

[19]  S. Meguid,et al.  Multiscale modeling of carbon nanotube epoxy composites , 2015 .

[20]  R. Batra,et al.  Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov -Galerkin method , 2004 .

[21]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[22]  V. Varadan,et al.  Mechanical properties of carbon nanotube/polymer composites , 2014, Scientific Reports.

[23]  Xinwei Wang,et al.  On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites , 2006 .

[24]  Yijun Liu,et al.  Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites , 2004 .

[25]  Pauli Pedersen Design for Minimum Stress Concentration — Some Practical Aspects , 1988 .

[26]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[27]  Ole Sigmund,et al.  Homogenization-based topology optimization for high-resolution manufacturable micro-structures , 2018 .

[28]  A. Muc,et al.  Vibration Control of Defects in Carbon Nanotubes , 2011 .

[29]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[30]  Aleksander Muc,et al.  Design and identification methods of effective mechanical properties for carbon nanotubes , 2010 .

[31]  Aleksander Muc,et al.  Transversely isotropic properties of carbon nanotube/polymer composites , 2016 .

[32]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[33]  George Stefanou,et al.  Effect of waviness and orientation of carbon nanotubes on random apparent material properties and RVE size of CNT reinforced composites , 2016 .

[34]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[35]  E. S. Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[36]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[37]  A. Muc,et al.  Simplified optimal modeling of resin injection molding process , 2019, e-Polymers.

[38]  Aleksander Muc,et al.  Buckling and Free Vibrations of Nanoplates – Comparison of Nonlocal Strain and Stress Approaches , 2019, Applied Sciences.

[39]  Małgorzata Chwał,et al.  Nonlocal Analysis of Natural Vibrations of Carbon Nanotubes , 2018, Journal of Materials Engineering and Performance.

[40]  Z. Hashin,et al.  The Elastic Moduli of Fiber-Reinforced Materials , 1964 .

[41]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[42]  Pauli Pedersen,et al.  Shapes of orthotropic plates for minimum energy concentration , 1992 .

[43]  A. Muc,et al.  Optimization of sandwich structures having FRP faces , 1999 .

[44]  Noboru Kikuchi,et al.  Shape optimization in laminated composite plates , 1989 .

[45]  Erik Steen Kristensen,et al.  On the optimum shape of fillets in plates subjected to multiple in‐plane loading cases , 1976 .

[46]  S. Harsha,et al.  Analysis of mechanical properties of carbon nanotube reinforced polymer composites using multi-scale finite element modeling approach , 2016 .

[47]  A. Muc MODELING OF CNTs / NANOCOMPOSITES DEFORMATIONS AND TENSILE FRACTURE , 2009 .

[48]  A. Muc Choice of Design Variables in the Stacking Sequence Optimization for Laminated Structures , 2016, Mechanics of Composite Materials.

[49]  C. V. Ramakrishnan,et al.  Structural Shape Optimization Using Penalty Functions , 1974 .

[50]  P. Kędziora,et al.  Carbon Nanotube/Polymer Nanocomposites: A Brief Modeling Overview , 2013 .

[51]  A. Muc,et al.  Analytical discrete stacking sequence optimization of rectangular composite plates subjected to buckling and FPF constraints , 2016 .

[52]  Xiao-jian Xu,et al.  A model for functionally graded materials , 2018, Composites Part B: Engineering.

[53]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[54]  A. Muc,et al.  An evolution strategy in structural optimization problems for plates and shells , 2012 .

[55]  E. Morozov,et al.  Mechanics and analysis of composite materials , 2001 .

[56]  J. C. H. Affdl,et al.  The Halpin-Tsai Equations: A Review , 1976 .

[57]  Brett A. Bednarcyk,et al.  Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach , 2012 .

[58]  Aleksander Muc,et al.  Evolutionary Design of Engineering Constructions , 2018, Latin American Journal of Solids and Structures.

[59]  M. Chwał Numerical Evaluation of Effective Material Constants for CNT-Based Polymeric Nanocomposites , 2013 .

[60]  A. Muc,et al.  Genetic algorithms and finite element analysis in optimization of composite structures , 2001 .

[61]  A. Muc,et al.  Sandwich plates-free vibrations and damping analysis , 1998 .

[62]  J. Aboudi Mechanics of composite materials - A unified micromechanical approach , 1991 .

[63]  S. K. Georgantzinos,et al.  Investigation of stress–strain behavior of single walled carbon nanotube/rubber composites by a multi-scale finite element method , 2009 .

[64]  Raphael T. Haftka,et al.  Accuracy Analysis of the Semi-Analytical Method for Shape Sensitivity Calculation∗ , 1990 .

[65]  Shiwei Zhou,et al.  Multiobjective topology optimization for finite periodic structures , 2010 .

[66]  R. Rafiee,et al.  A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites , 2010 .

[67]  E. Hinton,et al.  A review of homogenization and topology optimization I- homogenization theory for media with periodic structure , 1998 .

[68]  A. Muc,et al.  Description of the Resin Curing Process—Formulation and Optimization , 2019, Polymers.

[69]  Peng Jin,et al.  Flutter Characteristic Study of Composite Sandwich Panel with Functionally Graded Foam Core , 2016 .

[70]  A. Muc,et al.  Buckling and failure analysis of FRP faced sandwich plates , 2000 .

[71]  M. Chwał,et al.  Deformations and Tensile Fracture of Carbon Nanotubes Based on the Numerical Homogenization , 2017 .

[72]  A. Muc,et al.  Homogenization Models for Carbon Nanotubes , 2004 .