Autonomous Navigation of Mars Probes by Combining Optical Data of Viewing Martian Moons and SST Data

Autonomous navigation has become a key technology for deep space exploration missions. Phobos and Deimos, the two natural moons of Mars, are important optical navigation information sources available for Mars missions. However, during the phase of the probe orbiting close to Mars, the ephemeris bias and the difference between the barycentre and the centre of brightness of a Martian moon will result in low navigation accuracy. On the other hand, Satellite-to-Satellite Tracking (SST) can achieve convenient and high accuracy observation for autonomous navigation. However, this cannot apply for a Mars mission during the Mars orbit phase only by SST data because of a rank defect problem of the Jacobian matrix. To improve the autonomous navigation accuracy of Mars probes, this paper presents a new autonomous navigation method that combines SST radio data provided by two probes and optical measurement by viewing the natural Martian moons. Two sequential orbit determination algorithms, an Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are compared. Simulation results show this method can obtain high autonomous navigation accuracy during the probe's Mars Orbit phase.

[1]  E. Glenn Lightsey,et al.  Integrated Performance of an Autonomous Optical Navigation System for Space Exploration , 2010 .

[2]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[3]  Mark L. Psiaki,et al.  Absolute Orbit and Gravity Determination using Relative Position Measurements Between Two Satellites , 2007 .

[4]  David K. Geller,et al.  Autonomous Optical Navigation at Jupiter: A Linear Covariance Analysis , 2006 .

[5]  E. Glenn Lightsey,et al.  Real-Time Navigation for Mars Missions Using the Mars Network , 2008 .

[6]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[7]  Daniel G. Kubitschek,et al.  Autonomous Navigation for the Deep Impact Mission Encounter with Comet Tempel 1 , 2005 .

[8]  Joseph E. Riedel,et al.  Orbit Determination Performance Evaluation of the Deep Space 1 Autonomous Navigation System , 1998 .

[9]  T. C. Duxbury,et al.  Viewing Phobos and Deimos for Navigating Mariner 9 , 1974 .

[10]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[11]  G. L. Wycoff,et al.  (Erratum) Letter to the Editor - The Tycho-2 catalogue of the 2.5 million brightest stars , 2000 .

[12]  George H. Born,et al.  Autonomous Interplanetary Orbit Determination Using Satellite-to-Satellite Tracking , 2007 .

[13]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[14]  V. Dehant,et al.  First numerical ephemerides of the Martian moons , 2007 .

[15]  Jiancheng Fang,et al.  An overview of the autonomous navigation for a gravity-assist interplanetary spacecraft , 2013 .

[16]  Lin Liu,et al.  Orbit Determination Using Satellite-to-Satellite Tracking Data , 2001 .

[17]  William E. Wiesel,et al.  Autonomous orbit determination system for earth satellites , 1989 .

[18]  Joseph E. Riedel,et al.  The Deep Space 1 autonomous navigation system - A post-flight analysis , 2000 .

[19]  Mark L. Psiaki,et al.  AUTONOMOUS LOW-EARTH-ORBIT DETERMINATION FROM MAGNETOMETER AND SUN SENSOR DATA , 1998 .