A generalized strong law of large numbers

Abstract. Strong laws of large numbers have been stated in the literature for measurable functions taking on values on different spaces. In this paper, a strong law of large numbers which generalizes some previous ones (like those for real-valued random variables and compact random sets) is established. This law is an example of a strong law of large numbers for Borel measurable nonseparably valued elements of a metric space.

[1]  Fumio Hiai,et al.  Convergence of conditional expectations and strong laws of large numbers for multivalued random variables , 1985 .

[2]  K. Arrow,et al.  General Competitive Analysis , 1971 .

[3]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[4]  M. Talagrand The Glivenko-Cantelli Problem , 1987 .

[5]  J. A. Cuesta,et al.  Strong convergence of weighted sums of random elements through the equivalence of sequences of distributions , 1988 .

[6]  M. Puri,et al.  Limit theorems for random compact sets in Banach space , 1985, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  Noel A Cressie,et al.  Strong limit-theorem for random sets , 1978 .

[8]  Miguel López-Díaz,et al.  Approximating Integrably Bounded Fuzzy Random Variable Sin Terms of the "Generalized" Hausdorff Metric , 1998, Inf. Sci..

[9]  Théoràme ergodique ponctuel et lois fortes des grands nombres pour des points aléatoires d'un espace métrique à courbure négative , 1997 .

[10]  H. Rådström An embedding theorem for spaces of convex sets , 1952 .

[11]  Christian Hess,et al.  Multivalued strong laws of large numbers in the slice topology. Application to integrands , 1994 .

[12]  J. A. Cuesta,et al.  A review on strong convergence of weighted sums of random elements based on Wasserstein metrics , 1992 .

[13]  Zvi Artstein,et al.  Law of Large Numbers for Random Sets and Allocation Processes , 1981, Math. Oper. Res..

[14]  Z. Artstein,et al.  A Strong Law of Large Numbers for Random Compact Sets , 1975 .

[15]  A. Beck,et al.  $P$-uniform convergence and a vector-valued strong law of large numbers , 1970 .

[16]  J. A. Cuesta,et al.  The strong law of large numbers for k-means and best possible nets of Banach valued random variables , 1988 .

[17]  M L Puri,et al.  DIFFÉRENTIELLE D'UNE FONCTION FLOUE , 1981 .

[18]  G. Debreu Integration of correspondences , 1967 .

[19]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[20]  M. Puri,et al.  The Concept of Normality for Fuzzy Random Variables , 1985 .

[21]  Marjorie G. Hahn,et al.  Limit theorems for random sets: An application of probability in banach space results , 1983 .

[22]  Miguel López-Díaz,et al.  Reversing the order of integration in iterated expectations of fuzzy random variables, and statistical applications , 1998 .

[23]  W. J. Padgett Laws of Large Numbers for Normed Linear Spaces and Certain Frechet Spaces , 1973 .

[24]  N. Etemadi An elementary proof of the strong law of large numbers , 1981 .

[25]  L. Hörmander Sur la fonction d’appui des ensembles convexes dans un espace localement convexe , 1955 .

[26]  Dan A. Ralescu,et al.  Strong Law of Large Numbers for Banach Space Valued Random Sets , 1983 .

[27]  M. Puri,et al.  Limit theorems for fuzzy random variables , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[28]  R. Aumann INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .

[29]  J. Hoffmann-jorgensen Necessary and sufficient condition for the uniform law of large numbers , 1985 .

[30]  N. Etemadi,et al.  On the laws of large numbers for nonnegative random variables , 1983 .