Machine Learning in tunnelling – Capabilities and challenges

[1]  Jianrong Tan,et al.  Prediction of geological conditions for a tunnel boring machine using big operational data , 2019, Automation in Construction.

[2]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[3]  Heping Pan,et al.  Application of dimensionality reduction technique to improve geophysical log data classification performance in crystalline rocks , 2015 .

[4]  V. Jaiganesh,et al.  A Literature Review on Supervised Machine Learning Algorithms and Boosting Process , 2017 .

[5]  Thomas Marcher,et al.  Application of artificial neural networks for Underground construction – Chances and challenges – Insights from the BBT exploratory tunnel Ahrental Pfons , 2019, Geomechanics and Tunnelling.

[6]  Saro Lee,et al.  Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS , 2012 .

[7]  Christian Schwarz,et al.  Integration of reflection seismic data into the documentation during the construction of the Brenner Base Tunnel: Einbindung von Reflexionsseismik in die Dokumentation beim Bau des Brenner Basistunnels , 2017 .

[8]  Bernd Moritz,et al.  Determination of the system behaviour based on data analysis of a hard rock shield TBM / Analyse der Maschinenparameter zur Erfassung des Systemverhaltens beim Hartgesteins‐Schildvortrieb , 2014 .

[9]  Shui-Hua Jiang,et al.  Landslide displacement prediction based on multivariate chaotic model and extreme learning machine , 2017 .

[10]  Vineet R. Kamat,et al.  Integrated Information Modeling and Visual Simulation of Engineering Operations using Dynamic Augmented Reality Scene Graphs , 2011, J. Inf. Technol. Constr..

[11]  Konrad Bergmeister,et al.  Development of holistic prognosis models using exploration techniques and seismic prediction , 2017 .

[12]  Yanan Dong,et al.  A Deep-Learning-Based Multiple Defect Detection Method for Tunnel Lining Damages , 2019, IEEE Access.

[13]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[14]  Thomas Dickmann Theoretical and Applied Case Studies of Seismic Imaging in Tunnelling , 2008 .

[15]  Akbar A. Javadi,et al.  Intelligent finite element method: An evolutionary approach to constitutive modeling , 2009, Adv. Eng. Informatics.

[16]  Hod Lipson,et al.  Task-agnostic self-modeling machines , 2019, Science Robotics.

[17]  Andrés Naranjo,et al.  Digital data acquisition and 3D structural modelling for mining and civil engineering – the La Colosa gold mining project, Colombia , 2016 .

[18]  Chao Zhang,et al.  Recurrent neural networks for real-time prediction of TBM operating parameters , 2019, Automation in Construction.

[19]  Ying Zhou,et al.  Implementation of augmented reality for segment displacement inspection during tunneling construction , 2017 .

[20]  Ali Moradzadeh,et al.  Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks , 2008 .

[21]  Gerald Goger,et al.  Tunnelling 4.0 – Construction‐related future trends , 2018 .

[22]  Konrad Bergmeister,et al.  Learning and optimization from the exploratory tunnel – Brenner Base Tunnel , 2017 .

[23]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[24]  Phillip S. Dunston,et al.  Identification of application areas for Augmented Reality in industrial construction based on technology suitability , 2008 .