Complexity of regular invertible p-adic motions.

We consider issues of computational complexity that arise in the study of quasi-periodic motions (Siegel discs) over the p-adic integers, where p is a prime number. These systems generate regular invertible dynamics over the integers modulo p(k), for all k, and the main questions concern the computation of periods and orbit structure. For a specific family of polynomial maps, we identify conditions under which the cycle structure is determined solely by the number of Siegel discs and two integer parameters for each disc. We conjecture the minimal parametrization needed to achieve-for every odd prime p-a two-disc tessellation with maximal cycle length. We discuss the relevance of Cebotarev's density theorem to the probabilistic description of these dynamical systems. (c) 2001 American Institute of Physics.

[1]  Neal Koblitz,et al.  Algebraic aspects of cryptography , 1998, Algorithms and computation in mathematics.

[2]  T. Apostol Introduction to analytic number theory , 1976 .

[3]  Franco Vivaldi,et al.  Galois theory of periodic orbits of rational maps , 1992 .

[4]  P. Cameron Permutation groups , 1996 .

[5]  D. Bosio,et al.  Round-off errors and p-adic numbers , 2000 .

[6]  Joseph H. Silverman,et al.  Periodic points, multiplicities, and dynamical units. , 1995 .

[7]  Jean-Pierre Serre A Course in Arithmetic , 1973 .

[8]  Rudolf Lide,et al.  Finite fields , 1983 .

[9]  L. A. Shepp,et al.  Ordered cycle lengths in a random permutation , 1966 .

[10]  Jonathan D. Lubin Nonarchimedean dynamical systems , 1994 .

[11]  H. Dubner,et al.  Primes of the form . , 2000 .

[12]  Patrick Morton,et al.  The Galois Theory of Periodic Points of Polynomial Maps , 1994 .

[13]  Nigel P. Smart,et al.  p-adic Chaos and Random Number Generation , 1998, Exp. Math..

[14]  Closure of Periodic Points Over a Non‐Archimedean Field , 2000 .

[15]  Fernando Q. Gouvêa,et al.  P-Adic Numbers: An Introduction , 1993 .

[16]  L. Kadanoff,et al.  Reversible Boolean networks I: distribution of cycle lengths Physica D 149 , 2000, cond-mat/0004422.

[17]  Michael Pohst,et al.  Algorithmic algebraic number theory , 1989, Encyclopedia of mathematics and its applications.

[18]  D. Arrowsmith,et al.  Geometry of p -adic Siegel discs , 1994 .

[19]  M. Murty Artin’s conjecture for primitive roots , 1988 .

[20]  S Albeverio,et al.  Memory retrieval as a p-adic dynamical system. , 1999, Bio Systems.

[21]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[22]  K. Kaneko Symplectic cellular automata , 1988 .

[23]  Patrick Morton,et al.  Bifurcations and discriminants for polynomial maps , 1995 .

[24]  Robert L. Benedetto p-Adic Dynamics and Sullivan's No Wandering Domains Theorem , 2000, Compositio Mathematica.

[25]  p-adic periodic points and Sen's theorem , 1996 .

[26]  Franco Vivaldi,et al.  Periodicity and Transport from Round-Off Errors , 1994, Exp. Math..

[27]  J. Keating Asymptotic properties of the periodic orbits of the cat maps , 1991 .

[28]  Franco Vivaldi,et al.  Ideal orbits of toral automorphisms , 1989 .

[29]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .