Biomechanics of trabecular bone.

Trabecular bone is a complex material with substantial heterogeneity. Its elastic and strength properties vary widely across anatomic sites, and with aging and disease. Although these properties depend very much on density, the role of architecture and tissue material properties remain uncertain. It is interesting that the strains at which the bone fails are almost independent of density. Current work addresses the underlying structure-function relations for such behavior, as well as more complex mechanical behavior, such as multiaxial loading, time-dependent failure, and damage accumulation. A unique tool for studying such behavior is the microstructural class of finite element models, particularly the "high-resolution" models. It is expected that with continued progress in this field, substantial insight will be gained into such important problems as osteoporosis, bone fracture, bone remodeling, and design/analysis of bone-implant systems. This article reviews the state of the art in trabecular bone biomechanics, focusing on the mechanical aspects, and attempts to identify important areas of current and future research.

[1]  T. Keaveny,et al.  Dependence of yield strain of human trabecular bone on anatomic site. , 2001, Journal of biomechanics.

[2]  G. Niebur,et al.  High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. , 2000, Journal of biomechanics.

[3]  S Vajjhala,et al.  A cellular solid model for modulus reduction due to resorption of trabeculae in bone. , 2000, Journal of biomechanical engineering.

[4]  T M Keaveny,et al.  Biomechanical consequences of an isolated overload on the human vertebral body , 2000, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[5]  J H Keyak,et al.  Prediction of femoral fracture load using finite element models: an examination of stress- and strain-based failure theories. , 2000, Journal of biomechanics.

[6]  D Vashishth,et al.  In vivo diffuse damage in human vertebral trabecular bone. , 2000, Bone.

[7]  M. Dalstra,et al.  Age variations in the properties of human tibial trabecular bone and cartilage , 1997, Acta orthopaedica Scandinavica. Supplementum.

[8]  G. Niebur,et al.  Convergence behavior of high-resolution finite element models of trabecular bone. , 1999, Journal of biomechanical engineering.

[9]  David P. Fyhrie,et al.  The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modeling , 1999 .

[10]  S. Goldstein,et al.  Femoral strength is better predicted by finite element models than QCT and DXA. , 1999, Journal of biomechanics.

[11]  S. Goldstein,et al.  Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. , 1999, Journal of biomechanics.

[12]  R. Huiskes,et al.  Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. , 1999, Bone.

[13]  T M Keaveny,et al.  A cellular solid criterion for predicting the axial-shear failure properties of bovine trabecular bone. , 1999, Journal of biomechanical engineering.

[14]  T M Keaveny,et al.  Biomechanical effects of intraspecimen variations in trabecular architecture: a three-dimensional finite element study. , 1999, Bone.

[15]  P Rüegsegger,et al.  Load transfer analysis of the distal radius from in-vivo high-resolution CT-imaging. , 1999, Journal of biomechanics.

[16]  T. Keaveny,et al.  Uniaxial yield strains for bovine trabecular bone are isotropic and asymmetric , 1999, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[17]  R Huiskes,et al.  The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. , 1999, Journal of biomechanics.

[18]  T. Keaveny,et al.  Mechanical behavior of human trabecular bone after overloading , 1999, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[19]  G. Pharr,et al.  The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. , 1999, Journal of biomechanics.

[20]  Y P Arramon,et al.  Application of the Tsai-Wu quadratic multiaxial failure criterion to bovine trabecular bone. , 1999, Journal of biomechanical engineering.

[21]  P Rüegsegger,et al.  Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions. , 1999, Journal of biomechanics.

[22]  D P Fyhrie,et al.  Human vertebral body apparent and hard tissue stiffness. , 1998, Journal of biomechanics.

[23]  S J Hollister,et al.  A global relationship between trabecular bone morphology and homogenized elastic properties. , 1998, Journal of biomechanical engineering.

[24]  T. McMahon,et al.  Creep contributes to the fatigue behavior of bovine trabecular bone. , 1998, Journal of biomechanical engineering.

[25]  B. Manthey,et al.  Three-dimensional confocal images of microdamage in cancellous bone. , 1998, Bone.

[26]  J. Kinney,et al.  Numerical errors and uncertainties in finite-element modeling of trabecular bone. , 1998, Journal of biomechanics.

[27]  R. Huiskes,et al.  The Anisotropic Hooke's Law for Cancellous Bone and Wood , 1998, Journal Of Elasticity.

[28]  S. Goldstein,et al.  Finite‐element modeling of trabecular bone: Comparison with mechanical testing and determination of tissue modulus , 1998, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[29]  T. Keaveny,et al.  Yield strain behavior of trabecular bone. , 1998, Journal of biomechanics.

[30]  W C Hayes,et al.  Computed tomography‐based finite element analysis predicts failure loads and fracture patterns for vertebral sections , 1998, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[31]  S. Majumdar,et al.  High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. , 1998, Bone.

[32]  R E Guldberg,et al.  The accuracy of digital image-based finite element models. , 1998, Journal of biomechanical engineering.

[33]  N L Fazzalari,et al.  Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage. , 1998, Bone.

[34]  Ph. D Tony M. Keaveny Mechanistic Approaches to Analysis of Trabecular Bone , 1998 .

[35]  P Zioupos,et al.  Mechanical properties and the hierarchical structure of bone. , 1998, Medical engineering & physics.

[36]  R. Huiskes,et al.  Relationships between bone morphology and bone elastic properties can be accurately quantified using high‐resolution computer reconstructions , 1998, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[37]  H. Skinner,et al.  Prediction of femoral fracture load using automated finite element modeling. , 1997, Journal of biomechanics.

[38]  W. Ambrosius,et al.  Trabecular bone volume and microdamage accumulation in the femoral heads of women with and without femoral neck fractures. , 1997, Bone.

[39]  Ming Ding,et al.  Age variations in the properties of human tibial trabecular bone. , 1997, The Journal of bone and joint surgery. British volume.

[40]  G. Pharr,et al.  Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. , 1997, Biomaterials.

[41]  T. Keaveny,et al.  Dependence of trabecular damage on mechanical strain , 1997, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[42]  T M Keaveny,et al.  Three-dimensional imaging of trabecular bone using the computer numerically controlled milling technique. , 1997, Bone.

[43]  L. Gibson,et al.  Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure. , 1997, Bone.

[44]  R. Huiskes,et al.  Fabric and elastic principal directions of cancellous bone are closely related. , 1997, Journal of biomechanics.

[45]  Lorna J. Gibson,et al.  The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids , 1997 .

[46]  A Odgaard,et al.  Three-dimensional methods for quantification of cancellous bone architecture. , 1997, Bone.

[47]  J A McGeough,et al.  Age-Related Changes in the Compressive Strength of Cancellous Bone. The Relative Importance of Changes in Density and Trabecular Architecture* , 1997, The Journal of bone and joint surgery. American volume.

[48]  S. Stover,et al.  Residual strength of equine bone is not reduced by intense fatigue loading: implications for stress fracture. , 1997, Journal of biomechanics.

[49]  D. Burr,et al.  Bone Microdamage and Skeletal Fragility in Osteoporotic and Stress Fractures , 1997, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[50]  T. Keaveny,et al.  Systematic and random errors in compression testing of trabecular bone , 1997, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[51]  A. Curnier,et al.  A 3D damage model for trabecular bone based on fabric tensors. , 1996, Journal of biomechanics.

[52]  R. Huiskes,et al.  Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. , 1996, Journal of biomechanics.

[53]  T M Keaveny,et al.  The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation. , 1996, Journal of biomechanics.

[54]  B. van Rietbergen,et al.  COMPUTATIONAL STRATEGIES FOR ITERATIVE SOLUTIONS OF LARGE FEM APPLICATIONS EMPLOYING VOXEL DATA , 1996 .

[55]  Engh Ca,et al.  Mechanical consequences of bone ingrowth in a hip prosthesis inserted without cement. , 1996 .

[56]  C. Simmons,et al.  Trabecular bone morphology from micro‐magnetic resonance imaging , 1996, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[57]  Philippe K. Zysset,et al.  An alternative model for anisotropic elasticity based on fabric tensors , 1995 .

[58]  M. Hahn,et al.  Microcallus formations of the cancellous bone: A quantitative analysis of the human spine , 1995, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[59]  J. Kinney,et al.  In vivo, three‐dimensional microscopy of trabecular bone , 1995, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[60]  R. Huiskes,et al.  A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. , 1995, Journal of biomechanics.

[61]  W C Hayes,et al.  Mechanical behavior of damaged trabecular bone. , 1994, Journal of biomechanics.

[62]  W C Hayes,et al.  Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. , 1994, Journal of biomechanics.

[63]  H B Skinner,et al.  Correlation of Computed Finite Element Stresses to Bone Density After Remodeling Around Cementless Femoral Implants , 1994, Clinical orthopaedics and related research.

[64]  F. Linde,et al.  Elastic and viscoelastic properties of trabecular bone by a compression testing approach. , 1994, Danish medical bulletin.

[65]  N. Kikuchi,et al.  A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. , 1994, Journal of biomechanics.

[66]  S A Goldstein,et al.  The relationship between the structural and orthogonal compressive properties of trabecular bone. , 1994, Journal of biomechanics.

[67]  W C Hayes,et al.  Compressive creep behavior of bovine trabecular bone. , 1994, Journal of biomechanics.

[68]  W C Hayes,et al.  Finite element modeling of damage accumulation in trabecular bone under cyclic loading. , 1994, Journal of biomechanics.

[69]  D P Fyhrie,et al.  Failure mechanisms in human vertebral cancellous bone. , 1994, Bone.

[70]  J H Keyak,et al.  Validation of an automated method of three-dimensional finite element modelling of bone. , 1993, Journal of biomedical engineering.

[71]  W. Hayes,et al.  A 20-year perspective on the mechanical properties of trabecular bone. , 1993, Journal of biomechanical engineering.

[72]  W C Hayes,et al.  Trabecular bone modulus and strength can depend on specimen geometry. , 1993, Journal of biomechanics.

[73]  W. Hayes,et al.  Theoretical analysis of the experimental artifact in trabecular bone compressive modulus. , 1993, Journal of biomechanics.

[74]  W C Hayes,et al.  Compressive fatigue behavior of bovine trabecular bone. , 1993, Journal of biomechanics.

[75]  R. B. Ashman,et al.  Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. , 1993, Journal of biomechanics.

[76]  S C Cowin,et al.  On the relationship between the orthotropic Young's moduli and fabric. , 1992, Journal of biomechanics.

[77]  S A Goldstein,et al.  A comparison of the fatigue behavior of human trabecular and cortical bone tissue. , 1992, Journal of biomechanics.

[78]  Frank Linde,et al.  The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens. , 1992, Journal of biomechanics.

[79]  C. Cooper,et al.  Incidence of clinically diagnosed vertebral fractures: A population‐based study in rochester, minnesota, 1985‐1989 , 1992, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[80]  Søren E. Larsen,et al.  Characterizing anisotropy: A new concept☆ , 1992 .

[81]  C. Turner,et al.  On Wolff's law of trabecular architecture. , 1992, Journal of biomechanics.

[82]  W. Hayes,et al.  Fracture prediction for the proximal femur using finite element models: Part I--Linear analysis. , 1991, Journal of biomechanical engineering.

[83]  S. Goldstein,et al.  Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography , 1991, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[84]  B. Hasegawa,et al.  Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis. , 1991, Radiology.

[85]  F. Linde,et al.  The underestimation of Young's modulus in compressive testing of cancellous bone specimens. , 1991, Journal of biomechanics.

[86]  W. Hayes,et al.  Fracture prediction for the proximal femur using finite element models: Part II--Nonlinear analysis. , 1991, Journal of biomechanical engineering.

[87]  S. Goldstein,et al.  Evaluation of a microcomputed tomography system to study trabecular bone structure , 1990, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[88]  F Melsen,et al.  A direct method for fast three‐dimensional serial reconstruction , 1990, Journal of microscopy.

[89]  J. Currey,et al.  The Effect of Variation in Structure on the Young's Modulus of Cancellous Bone: A Comparison of Human and Non-Human Material , 1990, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[90]  J. Currey,et al.  Effects of Structural Variation on Young's Modulus of Non-Human Cancellous Bone , 1990, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[91]  H J Gundersen,et al.  Estimation of structural anisotropy based on volume orientation. A new concept , 1990, Journal of microscopy.

[92]  J Irons,et al.  Active Vibration Control of a Centrally Clamped Disc by Means of a Piezoelectric Polymer , 1990 .

[93]  L. Mosekilde,et al.  A model of vertebral trabecular bone architecture and its mechanical properties. , 1990, Bone.

[94]  S C Cowin,et al.  The fabric dependence of the orthotropic elastic constants of cancellous bone. , 1990, Journal of biomechanics.

[95]  W. Hayes,et al.  Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study. , 1990, Journal of computer assisted tomography.

[96]  H. Uhthoff,et al.  Repair of trabecular fatigue fractures. Cadaver studies of the upper femur. , 1989, Acta orthopaedica Scandinavica.

[97]  C. Turner,et al.  Yield behavior of bovine cancellous bone. , 1989, Journal of biomechanical engineering.

[98]  F. Linde,et al.  X-ray quantitative computed tomography: the relations to physical properties of proximal tibial trabecular bone specimens. , 1989, Journal of biomechanics.

[99]  F. Linde,et al.  The effect of constraint on the mechanical behaviour of trabecular bone specimens. , 1989, Journal of biomechanics.

[100]  F. Linde,et al.  Compressive axial strain distributions in cancellous bone specimens. , 1989, Journal of biomechanics.

[101]  S C Cowin,et al.  Errors induced by off-axis measurement of the elastic properties of bone. , 1988, Journal of biomechanical engineering.

[102]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[103]  W H Harris,et al.  Limitations of the continuum assumption in cancellous bone. , 1988, Journal of biomechanics.

[104]  D T Davy,et al.  Some viscoplastic characteristics of bovine and human cortical bone. , 1988, Journal of biomechanics.

[105]  S. Cowin,et al.  On the dependence of the elasticity and strength of cancellous bone on apparent density. , 1988, Journal of biomechanics.

[106]  M. Panjabi,et al.  A Study of the Compressive Properties of Lumbar Vertebral Trabeculae: Effects of Tissue Characteristics , 1987, Spine.

[107]  W. Fan,et al.  On phenomenological anisotropic failure criteria , 1987 .

[108]  Dusan Krajcinovic,et al.  Continuum damage mechanics theory and applications , 1987 .

[109]  L. Mosekilde,et al.  Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. , 1987, Bone.

[110]  S. Goldstein The mechanical properties of trabecular bone: dependence on anatomic location and function. , 1987, Journal of biomechanics.

[111]  Thomas J. R. Hughes,et al.  LARGE-SCALE VECTORIZED IMPLICIT CALCULATIONS IN SOLID MECHANICS ON A CRAY X-MP/48 UTILIZING EBE PRECONDITIONED CONJUGATE GRADIENTS. , 1986 .

[112]  S. Cowin,et al.  Wolff's law of trabecular architecture at remodeling equilibrium. , 1986, Journal of biomechanical engineering.

[113]  L. Mosekilde,et al.  Normal vertebral body size and compressive strength: relations to age and to vertebral and iliac trabecular bone compressive strength. , 1986, Bone.

[114]  T. Ohtani,et al.  Trabecular microfractures in the acetabulum. Histologic studies in cadavers. , 1984, Acta orthopaedica Scandinavica.

[115]  R. Mann,et al.  Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor , 1984 .

[116]  W. Hayes,et al.  Multiaxial strength characteristics of trabecular bone. , 1983, Journal of biomechanics.

[117]  L. S. Matthews,et al.  The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. , 1983, Journal of biomechanics.

[118]  T. Hansson,et al.  Microcalluses of the Trabeculae in Lumbar Vertebrae and Their Relation to the Bone Mineral Content , 1981, Spine.

[119]  T. Brown,et al.  Mechanical property distributions in the cancellous bone of the human proximal femur. , 1980, Acta orthopaedica Scandinavica.

[120]  Jack L. Lewis,et al.  ANISOTROPIC MODEL OF CANCELLOUS BONE. , 1979 .

[121]  W. Hayes,et al.  The compressive behavior of bone as a two-phase porous structure. , 1977, The Journal of bone and joint surgery. American volume.

[122]  W. J. Whitehouse The quantitative morphology of anisotropic trabecular bone , 1974, Journal of microscopy.

[123]  W. J. Whitehouse A stereological method for calculating internal surface areas in structures which have become anisotropic as the result of linear expansions or contractions , 1974, Journal of microscopy.

[124]  R. Rose,et al.  A possible mechanism of Wolff's law: trabecular microfractures. , 1973, Archives internationales de physiologie et de biochimie.

[125]  Stephen W. Tsai,et al.  A General Theory of Strength for Anisotropic Materials , 1971 .

[126]  J. Wolff Das Gesetz der Transformation der Knochen , 1893 .