Transcriptional regulatory networks of tumor-associated macrophages that drive malignancy in mesenchymal glioblastoma

[1]  H. Woo,et al.  Transcriptional regulatory networks of tumor-associated macrophages that drive malignancy in mesenchymal glioblastoma , 2020, Genome Biology.

[2]  Yan Zhang,et al.  T Cell Dysfunction in Cancer Immunity and Immunotherapy , 2019, Front. Immunol..

[3]  Xinran Dong,et al.  Single-Cell Transcriptomics Uncovers Glial Progenitor Diversity and Cell Fate Determinants during Development and Gliomagenesis. , 2019, Cell stem cell.

[4]  M. Ceccarelli,et al.  The combination of neoantigen quality and T lymphocyte infiltrates identifies glioblastomas with the longest survival , 2019, Communications Biology.

[5]  F. Azuaje,et al.  Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment , 2019, Nature Communications.

[6]  G. Getz,et al.  Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39 , 2019, Nature Neuroscience.

[7]  G. Finocchiaro,et al.  The landscape of the mesenchymal signature in brain tumours , 2019, Brain : a journal of neurology.

[8]  J. Sampson,et al.  Brain Tumor Microenvironment and Host State: Implications for Immunotherapy , 2019, Clinical Cancer Research.

[9]  R. Rabadán,et al.  Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma , 2019, Nature Medicine.

[10]  D. Schiffer,et al.  Glioblastoma: Microenvironment and Niche Concept , 2018, Cancers.

[11]  Kristin D. Alfaro,et al.  The molecular landscape of glioma in patients with Neurofibromatosis 1 , 2018, Nature Medicine.

[12]  R. Verhaak,et al.  Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target , 2018, The Journal of clinical investigation.

[13]  M. Milella,et al.  Role of mTOR Signaling in Tumor Microenvironment: An Overview , 2018, International journal of molecular sciences.

[14]  M. Ceccarelli,et al.  Single-cell transcriptome analysis of lineage diversity in high-grade glioma , 2018, Genome Medicine.

[15]  Fuhui Long,et al.  An anatomic transcriptional atlas of human glioblastoma , 2018, Science.

[16]  Zhihong Chen,et al.  Immune Microenvironment in Glioblastoma Subtypes , 2018, Front. Immunol..

[17]  R. Pieper,et al.  Neurofibromin knockdown in glioma cell lines is associated with changes in cytokine and chemokine secretion in vitro , 2018, Scientific Reports.

[18]  Steffen Dettling,et al.  When Immune Cells Turn Bad—Tumor-Associated Microglia/Macrophages in Glioma , 2018, International journal of molecular sciences.

[19]  H. Noushmehr,et al.  RGBM: regularized gradient boosting machines for identification of the transcriptional regulators of discrete glioma subtypes , 2018, Nucleic acids research.

[20]  A. Kriegstein,et al.  Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment , 2017, Genome Biology.

[21]  Tala,et al.  A metabolic function of FGFR3-TACC3 gene fusions in cancer , 2017, Nature.

[22]  Steven D Chang,et al.  Single-Cell RNAseq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma , 2017, bioRxiv.

[23]  Georg Langs,et al.  The DNA methylation landscape of glioblastoma disease progression shows extensive heterogeneity in time and space , 2017, Nature Medicine.

[24]  Edward F. Chang,et al.  Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. , 2017, Cancer cell.

[25]  M. Kandefer-Szerszeń,et al.  Tumor-Associated Macrophages as Target for Antitumor Therapy , 2017, Archivum Immunologiae et Therapiae Experimentalis.

[26]  You-hong Cui,et al.  Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth , 2017, Nature Communications.

[27]  In-Hee Lee,et al.  Spatiotemporal genomic architecture informs precision oncology in glioblastoma , 2017, Nature Genetics.

[28]  Mårten Fryknäs,et al.  Clonal Variation in Drug and Radiation Response among Glioma-Initiating Cells Is Linked to Proneural-Mesenchymal Transition. , 2016, Cell reports.

[29]  C. Brennan,et al.  Macrophage Ontogeny Underlies Differences in Tumor-Specific Education in Brain Malignancies. , 2016, Cell reports.

[30]  In-Hee Lee,et al.  Clonal evolution of glioblastoma under therapy , 2016, Nature Genetics.

[31]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[32]  A. Guarné,et al.  A Naturally-Occurring Transcript Variant of MARCO Reveals the SRCR Domain is Critical for Function , 2016, Immunology and cell biology.

[33]  J. McQuade,et al.  Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. , 2016, Cancer discovery.

[34]  Steven J. M. Jones,et al.  Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma , 2016, Cell.

[35]  Helmut Kettenmann,et al.  The role of microglia and macrophages in glioma maintenance and progression , 2015, Nature Neuroscience.

[36]  D. Nam,et al.  In vivo RNAi screen identifies NLK as a negative regulator of mesenchymal activity in glioblastoma , 2015, Oncotarget.

[37]  Brian Ruffell,et al.  Macrophages and therapeutic resistance in cancer. , 2015, Cancer cell.

[38]  William A. Flavahan,et al.  Periostin Secreted by Glioblastoma Stem Cells Recruits M2 Tumor-associated Macrophages and Promotes Malignant Growth , 2014, Nature Cell Biology.

[39]  G. Bergers,et al.  Location, location, location: macrophage positioning within tumors determines pro- or antitumor activity. , 2013, Cancer cell.

[40]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[41]  Christina S. Leslie,et al.  CSF-1R inhibition alters macrophage polarization and blocks glioma progression , 2013, Nature Medicine.

[42]  Se Hoon Kim,et al.  Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. , 2013, Cancer cell.

[43]  Jennie W. Taylor,et al.  Increase in tumor-associated macrophages after antiangiogenic therapy is associated with poor survival among patients with recurrent glioblastoma. , 2013, Neuro-oncology.

[44]  F. Ginhoux,et al.  Origin and differentiation of microglia , 2013, Front. Cell. Neurosci..

[45]  H. Woo,et al.  Patient-specific orthotopic glioblastoma xenograft models recapitulate the histopathology and biology of human glioblastomas in situ. , 2013, Cell reports.

[46]  J. Segall,et al.  Microglial Stimulation of Glioblastoma Invasion Involves Epidermal Growth Factor Receptor (EGFR) and Colony Stimulating Factor 1 Receptor (CSF-1R) Signaling , 2012, Molecular medicine.

[47]  Ganesh Rao,et al.  The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. , 2011, Genes & development.

[48]  Fei Li,et al.  Glioma-initiating cells: A predominant role in microglia/macrophages tropism to glioma , 2011, Journal of Neuroimmunology.

[49]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[50]  Wei Keat Lim,et al.  The transcriptional network for mesenchymal transformation of brain tumors , 2009, Nature.

[51]  B. Scheithauer,et al.  The 2007 WHO Classification of Tumours of the Central Nervous System , 2007, Acta Neuropathologica.

[52]  Yuri Kotliarov,et al.  Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. , 2006, Cancer cell.

[53]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[54]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[55]  D. Nam,et al.  USP1 targeting impedes GBM growth by inhibiting stem cell maintenance and radioresistance. , 2016, Neuro-oncology.

[56]  [World Health Organization classification of tumours of the central nervous system: a summary]. , 2016, Zhonghua bing li xue za zhi = Chinese journal of pathology.