Coulombic self-ordering upon charging a large-capacity layered cathode material for rechargeable batteries

[1]  T. Altantzis,et al.  Enhanced electrochemical performance of Li-rich cathode materials through microstructural control. , 2018, Physical chemistry chemical physics : PCCP.

[2]  A. Yamada,et al.  Highly Reversible Oxygen‐Redox Chemistry at 4.1 V in Na4/7−x[□1/7Mn6/7]O2 (□: Mn Vacancy) , 2018 .

[3]  A. Yamada,et al.  Oxygen redox in hexagonal layered NaxTMO3 (TM = 4d elements) for high capacity Na ion batteries , 2018 .

[4]  J. Rodríguez-Carvajal,et al.  FAULTS: a program for refinement of structures with extended defects , 2016 .

[5]  Erik J. Berg,et al.  Strong Oxygen Participation in the Redox Governing the Structural and Electrochemical Properties of Na-Rich Layered Oxide Na2IrO3 , 2016 .

[6]  K. Edström,et al.  Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. , 2016, Nature chemistry.

[7]  Yoshio Kobayashi,et al.  Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode , 2016, Nature Communications.

[8]  J. Tarascon,et al.  Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries , 2015, Science.

[9]  B. Hwang,et al.  O3–NaxMn1/3Fe2/3O2 as a positive electrode material for Na-ion batteries: structural evolutions and redox mechanisms upon Na+ (de)intercalation , 2015 .

[10]  J. Tarascon,et al.  Anionic redox chemistry in Na-rich Na2Ru1 − ySnyO3 positive electrode material for Na-ion batteries , 2015 .

[11]  K Ramesha,et al.  Origin of voltage decay in high-capacity layered oxide electrodes. , 2015, Nature materials.

[12]  K. Kubota,et al.  New Insight into Structural Evolution in Layered NaCrO2 during Electrochemical Sodium Extraction , 2015 .

[13]  J. White,et al.  Chemical delithiation and exfoliation of LixCoO2 , 2014, Journal of solid state chemistry.

[14]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[15]  K Ramesha,et al.  Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. , 2013, Nature materials.

[16]  François Weill,et al.  Different oxygen redox participation for bulk and surface: A possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2 , 2013 .

[17]  Marie-Liesse Doublet,et al.  High Performance Li2Ru1–yMnyO3 (0.2 ≤ y ≤ 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding , 2013 .

[18]  Y. K. Chen-Wiegart,et al.  3D analysis of a LiCoO2–Li(Ni1/3Mn1/3Co1/3)O2 Li-ion battery positive electrode using x-ray nano-tomography , 2013 .

[19]  C. Delmas,et al.  Reversible Oxygen Participation to the Redox Processes Revealed for Li1.20Mn0.54Co0.13Ni0.13O2 , 2013 .

[20]  S. Ong,et al.  A comparison of destabilization mechanisms of the layered Na(x)MO2 and Li(x)MO2 compounds upon alkali de-intercalation. , 2012, Physical chemistry chemical physics : PCCP.

[21]  Akira Yoshino,et al.  The birth of the lithium-ion battery. , 2012, Angewandte Chemie.

[22]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[23]  C. Delmas,et al.  Structure of Li2MnO3 with different degrees of defects , 2010 .

[24]  W. Jaegermann,et al.  Changes in the crystal and electronic structure of LiCoO(2) and LiNiO(2) upon Li intercalation and de-intercalation. , 2009, Physical chemistry chemical physics : PCCP.

[25]  Tsutomu Ohzuku,et al.  Solid-State Chemistry and Electrochemistry of LiCo1 ∕ 3Ni1 ∕ 3Mn1 ∕ 3O2 for Advanced Lithium-Ion Batteries III. Rechargeable Capacity and Cycleability , 2007 .

[26]  M. Jansen,et al.  Syntheses and Crystal Structures of Two Sodium Ruthenates: Na2RuO4 and Na2RuO3 , 2004 .

[27]  M. Shikano,et al.  Structure, and magnetic and electrochemical properties of layered oxides, Li2IrO3 , 2003 .

[28]  A. Manthiram,et al.  Factors Influencing the Layered to Spinel-like Phase Transition in Layered Oxide Cathodes , 2002 .

[29]  Zhonghua Lu,et al.  Synthesis, Structure, and Electrochemical Behavior of Li [ Ni x Li1 / 3 − 2x / 3Mn2 / 3 − x / 3 ] O 2 , 2002 .

[30]  C. Delmas,et al.  The LixNi1−yMgyO2 (y=0.05, 0.10) system: structural modifications observed upon cycling , 2000 .

[31]  C. Delmas,et al.  Optimization of the Composition of the Li1 − z Ni1 + z O 2 Electrode Materials: Structural, Magnetic, and Electrochemical Studies , 1996 .

[32]  S. Komineas,et al.  Topology and dynamics in ferromagnetic media , 1995, cond-mat/9511126.

[33]  J. Dahn,et al.  In situ x-ray diffraction and electrochemical studies of Li1−xNiO2 , 1993 .

[34]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[35]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[36]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .

[37]  GENERAL FEATURES. , 1934, Science.