Stochastic representation of subdiffusion processes with time-dependent drift

In statistical physics, subdiffusion processes are characterized by certain power-law deviations from the classical Brownian linear time dependence of the mean square displacement. For the mathematical description of subdiffusion, one uses fractional Fokker-Planck equations. In this paper we construct a stochastic process, whose probability density function is the solution of the fractional Fokker-Planck equation with time-dependent drift. We propose a strongly and uniformly convergent approximation scheme which allows us to approximate solutions of the fractional Fokker-Planck equation using Monte Carlo methods. The obtained results for moments of stochastic integrals driven by the inverse [alpha]-stable subordinator play a crucial role in the proofs, but may be also of independent interest.

[1]  A. Karoblis Local limit theorems for sums of independent random vectors , 1987 .

[2]  A. Weron,et al.  Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes , 1993 .

[3]  M. Magdziarz Black-Scholes Formula in Subdiffusive Regime , 2009 .

[4]  Karina Weron,et al.  Modeling of subdiffusion in space-time-dependent force fields beyond the fractional Fokker-Planck equation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Wojbor A. Woyczyński,et al.  Models of anomalous diffusion: the subdiffusive case , 2005 .

[6]  P Hänggi,et al.  Use and abuse of a fractional Fokker-Planck dynamics for time-dependent driving. , 2007, Physical review letters.

[7]  M. Meerschaert,et al.  Stochastic model for ultraslow diffusion , 2006 .

[8]  Hans-Peter Scheffler,et al.  Stochastic solution of space-time fractional diffusion equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[10]  Marcin Magdziarz,et al.  Competition between subdiffusion and Lévy flights: a Monte Carlo approach. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[12]  F. Steutel,et al.  Renewal theory and level passage by subordinators , 1999 .

[13]  J. Kingman On doubly stochastic Poisson processes , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .

[15]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[16]  S. Resnick,et al.  Activity rates with very heavy tails , 2006 .

[17]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[18]  R. Wolpert Lévy Processes , 2000 .

[19]  STATIONARITY OF DELAYED SUBORDINATORS , 2001 .

[20]  Igor M. Sokolov,et al.  Field-induced dispersion in subdiffusion. , 2006 .

[21]  J. Klafter,et al.  Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker-Planck Equation Approach , 1999 .

[22]  A. Jurlewicz Limit theorems for randomly coarse grained continuous-time random walks , 2005 .

[23]  Andreas N. Lagerås,et al.  A renewal-process-type expression for the moments of inverse subordinators , 2005 .

[24]  Karina Weron,et al.  Fractional Fokker-Planck dynamics: stochastic representation and computer simulation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Matthias Winkel,et al.  Electronic Foreign-Exchange Markets and Passage Events of Independent Subordinators , 2005 .

[26]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[27]  Mark M. Meerschaert,et al.  Limit theorems for continuous-time random walks with infinite mean waiting times , 2004, Journal of Applied Probability.