Adaptive Bernstein–von Mises theorems in Gaussian white noise

We investigate Bernstein-von Mises theorems for adaptive nonparametric Bayesian procedures in the canonical Gaussian white noise model. We consider both a Hilbert space and multiscale setting with applications in $L^2$ and $L^\infty$ respectively. This provides a theoretical justification for plug-in procedures, for example the use of certain credible sets for sufficiently smooth linear functionals. We use this general approach to construct optimal frequentist confidence sets based on the posterior distribution. We also provide simulations to numerically illustrate our approach and obtain a visual representation of the geometries involved.

[1]  D. Freedman,et al.  On the consistency of Bayes estimates , 1986 .

[2]  L. L. Cam,et al.  Asymptotic Methods In Statistical Decision Theory , 1986 .

[3]  Y. Meyer Wavelets and Operators , 1993 .

[4]  D. Cox An Analysis of Bayesian Inference for Nonparametric Regression , 1993 .

[5]  B. Silverman,et al.  Wavelet thresholding via a Bayesian approach , 1998 .

[6]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[7]  D. Freedman On the Bernstein-von Mises Theorem with Infinite Dimensional Parameters , 1999 .

[8]  Subhashis Ghosal,et al.  Asymptotic normality of posterior distributions in high-dimensional linear models , 1999 .

[9]  P. Massart,et al.  Adaptive estimation of a quadratic functional by model selection , 2000 .

[10]  M. K. Khan,et al.  On Berry-Esseen bounds of summability transforms , 2003 .

[11]  E. Belitser,et al.  Adaptive Bayesian inference on the mean of an infinite-dimensional normal distribution , 2003 .

[12]  A complement to Le Cam's theorem , 2007, 0708.2233.

[13]  I. Castillo Lower bounds for posterior rates with Gaussian process priors , 2008, 0807.2734.

[14]  S. Boucheron,et al.  A Bernstein-Von Mises Theorem for discrete probability distributions , 2008, 0807.2096.

[15]  J. Rousseau,et al.  BERNSTEIN-VON MISES THEOREM FOR LINEAR FUNCTIONALS OF THE DENSITY , 2009, 0908.4167.

[16]  R. Nickl,et al.  Uniform limit theorems for wavelet density estimators , 2008, 0805.1406.

[17]  I. Johnstone High dimensional Bernstein-von Mises: simple examples. , 2010, Institute of Mathematical Statistics collections.

[18]  Dominique Bontemps,et al.  Bernstein von Mises Theorems for Gaussian Regression with increasing number of regressors , 2010, 1009.1370.

[19]  R. Nickl,et al.  CONFIDENCE BANDS IN DENSITY ESTIMATION , 2010, 1002.4801.

[20]  H. Leahu On the Bernstein-von Mises phenomenon in the Gaussian white noise model , 2011 .

[21]  Marc Hoffmann,et al.  On adaptive inference and confidence bands , 2011, 1202.5145.

[22]  Adam D. Bull,et al.  Honest adaptive confidence bands and self-similar functions , 2011, 1110.4985.

[23]  A. V. D. Vaart,et al.  BAYESIAN INVERSE PROBLEMS WITH GAUSSIAN PRIORS , 2011, 1103.2692.

[24]  A. Kueh Locally Adaptive Density Estimation on the Unit Sphere Using Needlets , 2011, 1104.1807.

[25]  A. W. Vaart,et al.  Bayes procedures for adaptive inference in inverse problems for the white noise model , 2012, Probability Theory and Related Fields.

[26]  A. V. D. Vaart,et al.  Needles and Straw in a Haystack: Posterior concentration for possibly sparse sequences , 2012, 1211.1197.

[27]  I. Castillo A semiparametric Bernstein–von Mises theorem for Gaussian process priors , 2012 .

[28]  P. Bickel,et al.  The semiparametric Bernstein-von Mises theorem , 2010, 1007.0179.

[29]  Kolyan Ray,et al.  Bayesian inverse problems with non-conjugate priors , 2012, 1209.6156.

[30]  Judith Rousseau,et al.  Bayes and empirical Bayes : Do they merge? , 2012, 1204.1470.

[31]  Harry van Zanten,et al.  Honest Bayesian confidence sets for the L2-norm , 2013, 1311.7474.

[32]  R. Nickl,et al.  Nonparametric Bernstein–von Mises theorems in Gaussian white noise , 2012, 1208.3862.

[33]  L. Dümbgen,et al.  Statistical inference for the optimal approximating model , 2013 .

[34]  A General Bernstein--von Mises Theorem in semiparametric models , 2013 .

[35]  R. Nickl,et al.  On the Bernstein–von Mises phenomenon for nonparametric Bayes procedures , 2013, 1310.2484.

[36]  I. Castillo On Bayesian supremum norm contraction rates , 2013, 1304.1761.

[37]  R. Nickl,et al.  A sharp adaptive confidence ball for self-similar functions , 2014, 1406.3994.

[38]  A. W. Vaart,et al.  Frequentist coverage of adaptive nonparametric Bayesian credible sets , 2013, 1310.4489.

[39]  R. Nickl,et al.  Mathematical Foundations of Infinite-Dimensional Statistical Models , 2015 .

[40]  Judith Rousseau,et al.  On adaptive posterior concentration rates , 2013, 1305.5270.

[41]  A. V. D. Vaart,et al.  BAYESIAN LINEAR REGRESSION WITH SPARSE PRIORS , 2014, 1403.0735.

[42]  Kolyan Ray,et al.  Asymptotic theory for Bayesian nonparametric procedures in inverse problems , 2015 .

[43]  J. Rousseau,et al.  A Bernstein–von Mises theorem for smooth functionals in semiparametric models , 2013, 1305.4482.

[44]  A. W. Vaart,et al.  Frequentist coverage of adaptive nonparametric Bayesian credible sets , 2013, 1509.01906.

[45]  Zongming Ma,et al.  Discussion of "Frequentist coverage of adaptive nonparametric Bayesian credible sets" , 2015, 1509.01904.

[46]  Johannes Schmidt-Hieber,et al.  The Le Cam distance between density estimation, Poisson processes and Gaussian white noise , 2016, Mathematical Statistics and Learning.