Adaptive Bernstein–von Mises theorems in Gaussian white noise
暂无分享,去创建一个
[1] D. Freedman,et al. On the consistency of Bayes estimates , 1986 .
[2] L. L. Cam,et al. Asymptotic Methods In Statistical Decision Theory , 1986 .
[3] Y. Meyer. Wavelets and Operators , 1993 .
[4] D. Cox. An Analysis of Bayesian Inference for Nonparametric Regression , 1993 .
[5] B. Silverman,et al. Wavelet thresholding via a Bayesian approach , 1998 .
[6] A. V. D. Vaart,et al. Asymptotic Statistics: Frontmatter , 1998 .
[7] D. Freedman. On the Bernstein-von Mises Theorem with Infinite Dimensional Parameters , 1999 .
[8] Subhashis Ghosal,et al. Asymptotic normality of posterior distributions in high-dimensional linear models , 1999 .
[9] P. Massart,et al. Adaptive estimation of a quadratic functional by model selection , 2000 .
[10] M. K. Khan,et al. On Berry-Esseen bounds of summability transforms , 2003 .
[11] E. Belitser,et al. Adaptive Bayesian inference on the mean of an infinite-dimensional normal distribution , 2003 .
[12] A complement to Le Cam's theorem , 2007, 0708.2233.
[13] I. Castillo. Lower bounds for posterior rates with Gaussian process priors , 2008, 0807.2734.
[14] S. Boucheron,et al. A Bernstein-Von Mises Theorem for discrete probability distributions , 2008, 0807.2096.
[15] J. Rousseau,et al. BERNSTEIN-VON MISES THEOREM FOR LINEAR FUNCTIONALS OF THE DENSITY , 2009, 0908.4167.
[16] R. Nickl,et al. Uniform limit theorems for wavelet density estimators , 2008, 0805.1406.
[17] I. Johnstone. High dimensional Bernstein-von Mises: simple examples. , 2010, Institute of Mathematical Statistics collections.
[18] Dominique Bontemps,et al. Bernstein von Mises Theorems for Gaussian Regression with increasing number of regressors , 2010, 1009.1370.
[19] R. Nickl,et al. CONFIDENCE BANDS IN DENSITY ESTIMATION , 2010, 1002.4801.
[20] H. Leahu. On the Bernstein-von Mises phenomenon in the Gaussian white noise model , 2011 .
[21] Marc Hoffmann,et al. On adaptive inference and confidence bands , 2011, 1202.5145.
[22] Adam D. Bull,et al. Honest adaptive confidence bands and self-similar functions , 2011, 1110.4985.
[23] A. V. D. Vaart,et al. BAYESIAN INVERSE PROBLEMS WITH GAUSSIAN PRIORS , 2011, 1103.2692.
[24] A. Kueh. Locally Adaptive Density Estimation on the Unit Sphere Using Needlets , 2011, 1104.1807.
[25] A. W. Vaart,et al. Bayes procedures for adaptive inference in inverse problems for the white noise model , 2012, Probability Theory and Related Fields.
[26] A. V. D. Vaart,et al. Needles and Straw in a Haystack: Posterior concentration for possibly sparse sequences , 2012, 1211.1197.
[27] I. Castillo. A semiparametric Bernstein–von Mises theorem for Gaussian process priors , 2012 .
[28] P. Bickel,et al. The semiparametric Bernstein-von Mises theorem , 2010, 1007.0179.
[29] Kolyan Ray,et al. Bayesian inverse problems with non-conjugate priors , 2012, 1209.6156.
[30] Judith Rousseau,et al. Bayes and empirical Bayes : Do they merge? , 2012, 1204.1470.
[31] Harry van Zanten,et al. Honest Bayesian confidence sets for the L2-norm , 2013, 1311.7474.
[32] R. Nickl,et al. Nonparametric Bernstein–von Mises theorems in Gaussian white noise , 2012, 1208.3862.
[33] L. Dümbgen,et al. Statistical inference for the optimal approximating model , 2013 .
[34] A General Bernstein--von Mises Theorem in semiparametric models , 2013 .
[35] R. Nickl,et al. On the Bernstein–von Mises phenomenon for nonparametric Bayes procedures , 2013, 1310.2484.
[36] I. Castillo. On Bayesian supremum norm contraction rates , 2013, 1304.1761.
[37] R. Nickl,et al. A sharp adaptive confidence ball for self-similar functions , 2014, 1406.3994.
[38] A. W. Vaart,et al. Frequentist coverage of adaptive nonparametric Bayesian credible sets , 2013, 1310.4489.
[39] R. Nickl,et al. Mathematical Foundations of Infinite-Dimensional Statistical Models , 2015 .
[40] Judith Rousseau,et al. On adaptive posterior concentration rates , 2013, 1305.5270.
[41] A. V. D. Vaart,et al. BAYESIAN LINEAR REGRESSION WITH SPARSE PRIORS , 2014, 1403.0735.
[42] Kolyan Ray,et al. Asymptotic theory for Bayesian nonparametric procedures in inverse problems , 2015 .
[43] J. Rousseau,et al. A Bernstein–von Mises theorem for smooth functionals in semiparametric models , 2013, 1305.4482.
[44] A. W. Vaart,et al. Frequentist coverage of adaptive nonparametric Bayesian credible sets , 2013, 1509.01906.
[45] Zongming Ma,et al. Discussion of "Frequentist coverage of adaptive nonparametric Bayesian credible sets" , 2015, 1509.01904.
[46] Johannes Schmidt-Hieber,et al. The Le Cam distance between density estimation, Poisson processes and Gaussian white noise , 2016, Mathematical Statistics and Learning.