Lamb shift multipolar analysis

It is now well established that radiative decay of quantum emitters can be strongly modified by their environment. In this paper, we present an exact—within the weak-coupling approximation—multipole expression to compute the Lamb (frequency) shift induced by an arbitrary set of resonant scatterers on a nearby quantum emitter, using multiscattering theory. We also adopt a quasi-normal mode description to account for the line shape of the Lamb shift spectrum in the near field of a plasmonic nanosphere. It is then shown that the Lamb shift resonance can be blueshifted as the size of the nanoparticle increases, suggesting that nanoparticles may be used to tune this resonant interaction. Finally, a realistic calculation of the Lamb shift is made for a dimer configuration.

[1]  G. C. D. Francs,et al.  Dressed states of a quantum emitter strongly coupled to a metal nanoparticle. , 2016, Optics letters.

[2]  Wenqi Zhu,et al.  Quantum mechanical effects in plasmonic structures with subnanometre gaps , 2016, Nature Communications.

[3]  M. Garcia-Parajo,et al.  Enhancement and Inhibition of Spontaneous Photon Emission by Resonant Silicon Nanoantennas , 2016, 1605.02913.

[4]  Syed Abdullah Aljunid,et al.  Atomic Response in the Near-Field of Nanostructured Plasmonic Metamaterial. , 2016, Nano letters.

[5]  J. Wenger,et al.  Picosecond Lifetimes with High Quantum Yields from Single-Photon-Emitting Colloidal Nanostructures at Room Temperature. , 2016, ACS nano.

[6]  H. Rigneault,et al.  Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture , 2015, Scientific Reports.

[7]  H. Rigneault,et al.  Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-Enhanced Single-Molecule Fluorescence Detection at Micromolar Concentrations , 2015 .

[8]  Xiang Zhang,et al.  Metasurface-Enabled Remote Quantum Interference. , 2015, Physical review letters.

[9]  N. Bonod,et al.  Purcell factor of spherical Mie resonators , 2015 .

[10]  Alexandre V. Tishchenko,et al.  Analysis of plasmon resonances on a metal particle , 2014 .

[11]  Nicolas Bonod,et al.  Optimization of resonant effects in nanostructures via Weierstrass factorization , 2013 .

[12]  P Lalanne,et al.  Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. , 2013, Physical review letters.

[13]  S. Maier,et al.  Quantum plasmonics , 2013, Nature Physics.

[14]  Nicolas Bonod,et al.  Promoting Magnetic Dipolar Transition in Trivalent Lanthanide Ions with Lossless Mie Resonances , 2012 .

[15]  Andreas Henkel,et al.  Single unlabeled protein detection on individual plasmonic nanoparticles. , 2012, Nano letters.

[16]  Nicolas Bonod,et al.  Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA , 2012, Nature Communications.

[17]  Nicolas Bonod,et al.  Multipole methods for nanoantennas design: applications to Yagi-Uda configurations , 2011 .

[18]  A. Bouhelier,et al.  Fluorescence relaxation in the near-field of a mesoscopic metallic particle: distance dependence and role of plasmon modes. , 2008, Optics express.

[19]  Brian Stout,et al.  Recursive T matrix algorithm for resonant multiple scattering: applications to localized plasmon excitations. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  Peter Nordlander,et al.  Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles , 2007 .

[21]  R. McPhedran,et al.  Frequency shift of sources embedded in finite two-dimensional photonic clusters , 2006 .

[22]  Y. Kivshar,et al.  Giant lamb shift in photonic crystals. , 2004, Physical review letters.

[23]  Jacques Lafait,et al.  A transfer matrix approach to local field calculations in multiple-scattering problems , 2002 .

[24]  V. Letokhov,et al.  Spontaneous emission of an atom placed near a prolate nanospheroid , 2002 .

[25]  H. T. Dung,et al.  Decay of an excited atom near an absorbing microsphere , 2000, quant-ph/0012103.

[26]  Zubairy,et al.  Spontaneous radiation and lamb shift in three-dimensional photonic crystals , 2000, Physical review letters.

[27]  S. Saltiel,et al.  Resonant van der Waals Repulsion between Excited Cs Atoms and Sapphire Surface , 1999 .

[28]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[29]  S. Scheel,et al.  QED commutation relations for inhomogeneous Kramers-Kronig dielectrics , 1998, quant-ph/9803031.

[30]  H. T. Dung,et al.  Three-dimensional quantization of the electromagnetic field in dispersive and absorbing inhomogeneous dielectrics , 1997, quant-ph/9711039.

[31]  V. Letokhov,et al.  Radiative frequency shift and linewidth of an atom dipole in the vicinity of a dielectric microsphere , 1996 .

[32]  Bloch,et al.  van der Waals interactions between excited-state atoms and dispersive dielectric surfaces. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[33]  G. Kurizki,et al.  Spontaneous and induced atomic decay in photonic band structures , 1994 .

[34]  H. M. Lai,et al.  Dielectric microspheres as optical cavities: Einstein A and B coefficients and level shift , 1987 .

[35]  D. Kleppner,et al.  Inhibited spontaneous emission by a Rydberg atom. , 1985, Physical review letters.

[36]  P. Barber Absorption and scattering of light by small particles , 1984 .

[37]  Ronald R. Chance,et al.  Frequency shifts of an electric-dipole transition near a partially ref1ecting surface , 1975 .

[38]  G. Barton Frequency shifts near an interface: inadequacy of two-level atomic models , 1974 .

[39]  H. Bethe The Electromagnetic shift of energy levels , 1947 .

[40]  Willis E. Lamb,et al.  Fine Structure of the Hydrogen Atom by a Microwave Method , 1947 .

[41]  W. Marsden I and J , 2012 .

[42]  Karl Kaiser,et al.  An European , 2004 .

[43]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[44]  Physical Review Letters 63 , 1989 .