[Inference Based on Estimating Functions in the Presence of Nuisance Parameters]: Rejoinder

In many studies, the scientific objective can be formulated in terms of a statistical model indexed by parameters, only some of which are of scientific interest. The other "nuisance parameters" are required to complete the specification of the probability mechanism but are not of intrinsic value in themselves. It is well known that nuisance parameters can have a profound im- pact on inference. Many approaches have been proposed to eliminate or reduce their impact. In this paper, we consider two situations: where the likelihood is completely specified; and where only a part of the ran- dom mechanism can be reasonably assumed. In either case, we examine methods for dealing with nuisance parameters from the vantage point of parameter estimating functions. To establish a context, we begin with a review of the basic concepts and limitations of optimal estimating func- tions. We introduce a hierarchy of orthogonality conditions for estimat- ing functions that helps to characterize the sensitivity of inferences to nuisance parameters. It applies to both the fully and partly parametric cases. Throughout the paper, we rely on examples to illustrate the main

[1]  David Firth,et al.  On the efficiency of quasi-likelihood estimation , 1987 .

[2]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[3]  Bradford F. Kimball,et al.  Sufficient Statistical Estimation Functions for the Parameters of the Distribution of Maximum Values , 1946 .

[4]  L. Zhao,et al.  Correlated binary regression using a quadratic exponential model , 1990 .

[5]  Andrea Rotnitzky,et al.  Regression Models for Discrete Longitudinal Responses , 1993 .

[6]  Stephen M. Stigler,et al.  The History of Statistics: The Measurement of Uncertainty before 1900 , 1986 .

[7]  K. Liang,et al.  On the use of the quasi-likelihood method in teratological experiments. , 1994, Biometrics.

[8]  Empirical Bayes and conditional inference with many nuisance parameters , 1992 .

[9]  V. P. Godambe An Optimum Property of Regular Maximum Likelihood Estimation , 1960 .

[10]  D. Cox Regression Models and Life-Tables , 1972 .

[11]  B. Efron Defining the Curvature of a Statistical Problem (with Applications to Second Order Efficiency) , 1975 .

[12]  M. D. Hogan,et al.  The impact of litter effects on dose-response modeling in teratology. , 1986, Biometrics.

[13]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[14]  K Y Liang,et al.  Longitudinal data analysis for discrete and continuous outcomes. , 1986, Biometrics.

[15]  K. Liang Estimating functions and approximate conditional likelihood , 1987 .

[16]  M. Crowder On linear and quadratic estimating functions , 1987 .

[17]  Raymond J. Carroll,et al.  Conditional scores and optimal scores for generalized linear measurement-error models , 1987 .

[18]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[19]  Adrien-Marie Legendre,et al.  Nouvelles méthodes pour la détermination des orbites des comètes , 1970 .

[20]  Norman E. Breslow,et al.  Odds ratio estimators when the data are sparse , 1981 .

[21]  M. Kendall,et al.  Regression, structure and functional relationship. Part I. , 1951, Biometrika.

[22]  V. P. Godambe Conditional likelihood and unconditional optimum estimating equations , 1976 .

[23]  C. S. Weil Selection of the valid number of sampling units and a consideration of their combination in toxicological studies involving reproduction, teratogenesis or carcinogenesis. , 1970, Food and cosmetics toxicology.

[24]  Kung-Yee Liang,et al.  Odds ratio inference with dependent data , 1985 .

[25]  B. Lindsay Conditional score functions: Some optimality results , 1982 .

[26]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[27]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[28]  J. Durbin Estimation of Parameters in Time‐Series Regression Models , 1960 .

[29]  Takemi Yanagimoto,et al.  Combining moment estimates of a parameter common through strata , 1990 .

[30]  P. Diggle,et al.  Analysis of Longitudinal Data , 2003 .

[31]  V. P. Godambe,et al.  An extension of quasi-likelihood estimation , 1989 .

[32]  R. Morton,et al.  Efficiency of estimating equations and the use of pivots , 1981 .

[33]  Debabrata Basu,et al.  On the Elimination of Nuisance Parameters , 1977 .

[34]  R. W. Wedderburn Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method , 1974 .

[35]  W. Haenszel,et al.  Statistical aspects of the analysis of data from retrospective studies of disease. , 1959, Journal of the National Cancer Institute.

[36]  Eric R. Ziegel,et al.  Statistical Theory and Modelling , 1992 .

[37]  S. Zeger,et al.  Multivariate Regression Analyses for Categorical Data , 1992 .

[38]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[39]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[40]  N. Mantel,et al.  The Odds Ratios of a 2 × 2 Contingency Table , 1975 .

[41]  F. Richards A Method of Maximum‐Likelihood Estimation , 1961 .

[42]  B. Efron Double Exponential Families and Their Use in Generalized Linear Regression , 1986 .

[43]  R. Prentice,et al.  Correlated binary regression with covariates specific to each binary observation. , 1988, Biometrics.

[44]  Adelchi Azzalini,et al.  Estimation and hypothesis testing for collections of autoregressive time series , 1984 .

[45]  D. Hinkley,et al.  The Analysis of Transformed Data , 1984 .

[46]  P. McCullagh Quasi-Likelihood Functions , 1983 .

[47]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[48]  Stephen M. Stigler The History of Statistics: The Measurement of Uncertainty before 1900 , 1986 .

[49]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[50]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.