Fabrication of Vertically Oriented TiO2 Nanotube Arrays Using Dimethyl Sulfoxide Electrolytes

We detail anodic oxidation variables affecting the fabrication of vertically oriented TiO2 nanotube arrays using an electrolyte of dimethyl sulfoxide (DMSO) containing either hydrofluoric acid (HF), potassium fluoride (KF), or ammonium fluoride (NH4F). Various anodization variables including F- ion concentration, voltage, anodization time, water content, and previous use of the electrolyte can be combined to achieve nanotube arrays with length and morphology relevant to required applications. Using an anodization potential of 60 V with an electrolyte of 2% HF in DMSO, 70 h duration, nanotubes are achieved having a length of 101 μm, inner diameter 150 nm, and wall thickness 15 nm for a calculated geometric area of 3475. The weak adhesion of the DMSO fabricated nanotubes to the underlying oxide barrier layer and low tube-to-tube adhesion facilitates their separation for applications where dispersed nanotubes are desired. We examine the photoelectrochemical properties of 45 μm long nanotube arrays, crystalli...

[1]  C. López,et al.  Synthesis and characterization of polycrystalline Sn and SnO2 films with wire morphologies , 2007 .

[2]  Tejal A Desai,et al.  Influence of engineered titania nanotubular surfaces on bone cells. , 2007, Biomaterials.

[3]  Craig A. Grimes,et al.  A new benchmark for TiO2 nanotube array growth by anodization , 2007 .

[4]  Andrei Ghicov,et al.  Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. , 2007, Nano letters.

[5]  Craig A. Grimes,et al.  Synthesis and application of highly ordered arrays of TiO2 nanotubes , 2007 .

[6]  Craig A. Grimes,et al.  Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells , 2007 .

[7]  C. Grimes,et al.  Cation Effect on the Electrochemical Formation of Very High Aspect Ratio TiO2 Nanotube Arrays in Formamide−Water Mixtures , 2007 .

[8]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[9]  Craig A. Grimes,et al.  Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization , 2006 .

[10]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[11]  C. Grimes,et al.  Initial Studies on the Hydrogen Gas Sensing Properties of Highly-Ordered High Aspect Ratio TiO 2 Nanotube-Arrays 20 μ m to 222 μ m in Length , 2006 .

[12]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[13]  Craig A. Grimes,et al.  Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes , 2006 .

[14]  Craig A. Grimes,et al.  Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays , 2006 .

[15]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[16]  Craig A. Grimes,et al.  Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .

[17]  Craig A Grimes,et al.  Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. , 2005, Journal of nanoscience and nanotechnology.

[18]  C. López,et al.  Enhancement of electrochemical and photoelectrochemical properties of fibrous Zn and ZnO electrodes. , 2005, Chemical communications.

[19]  Hiroki Habazaki,et al.  Nanoporous Anodic Niobium Oxide Formed in Phosphate/Glycerol Electrolyte , 2005 .

[20]  Craig A. Grimes,et al.  The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .

[21]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[22]  C. Grimes,et al.  A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. , 2004, Journal of nanoscience and nanotechnology.

[23]  Craig A. Grimes,et al.  A Self-Cleaning, Room-Temperature Titania-Nanotube Hydrogen Gas Sensor , 2003 .

[24]  Craig A. Grimes,et al.  Fabrication of tapered, conical-shaped titania nanotubes , 2003 .

[25]  Craig A. Grimes,et al.  Fabrication of nanoporous tungsten oxide by galvanostatic anodization , 2003 .

[26]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[27]  T. Shobha,et al.  Anodization of hafnium in phosphate baths: Radio tracer studies , 2001 .

[28]  V. Parkhutik,et al.  Theoretical modelling of porous oxide growth on aluminium , 1992 .