Approximation using scattered shifts of a multivariate function

The approximation of a general d-variate function f by the shifts �(� − �), � ∈ � ⊂ R d , of a fixed functionoccurs in many applications such as data fit- ting, neural networks, and learning theory. When � = hZ d is a dilate of the integer lattice, there is a rather complete understanding of the approximation problem (6, 18) using Fourier techniques. However, in most applications the center set � is either given, or can be chosen with complete freedom. In both of these cases, the shift-invariant setting is too restrictive. This paper studies the approximation problem in the caseis arbitrary. It establishes approximation theorems whose error bounds reflect the local density of the points in �. Two different settings are analyzed. The first is when the setis prescribed in advance. In this case, the theorems of this paper show that, in analogy with the classical univariate spline ap- proximation, improved approximation occurs in regions where the density is high. The second setting corresponds to the problem of non-linear approximation. In that setting the setcan be chosen using information about the target function f. We discuss how to 'best' make these choices and give estimates for the approximation error.

[1]  T. Hangelbroek Error Estimates for Thin Plate Spline Approximation in the Disk , 2008 .

[2]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[3]  Jungho Yoon,et al.  Interpolation by Radial Basis Functions on Sobolev Space , 2001, J. Approx. Theory.

[4]  Amos Ron,et al.  The L2-Approximation Orders of Principal Shift-Invariant Spaces Generated by a Radial Basis Function , 1992 .

[5]  J. R. D. Francia Some Maximal Inequalities , 1985 .

[6]  Robert Schaback,et al.  Approximation by radial basis functions with finitely many centers , 1996 .

[7]  R. DeVore,et al.  Interpolation spaces and non-linear approximation , 1988 .

[8]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[9]  C. D. Boor,et al.  Fourier analysis of the approximation power of principal shift-invariant spaces , 1992 .

[10]  Michael J. Johnson Approximation in Lp(Rd) from Spaces Spanned by the Perturbed Integer Translates of a Radial Function , 2000 .

[11]  Michael J. Johnson A Bound on the Approximation Order of Surface Splines , 1998 .

[12]  Jungho Yoon,et al.  Spectral Approximation Orders of Radial Basis Function Interpolation on the Sobolev Space , 2001, SIAM J. Math. Anal..

[13]  R. DeVore,et al.  Degree of Adaptive Approximation , 1990 .

[14]  Joseph D. Ward,et al.  Scattered-Data Interpolation on Rn: Error Estimates for Radial Basis and Band-Limited Functions , 2004, SIAM J. Math. Anal..

[15]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[16]  Zongmin Wu,et al.  Local error estimates for radial basis function interpolation of scattered data , 1993 .

[17]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[18]  P. Petrushev Direct and converse theorems for spline and rational approximation and besov spaces , 1988 .

[19]  M. Buhmann Multivariate cardinal interpolation with radial-basis functions , 1990 .

[20]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[21]  D. Levin,et al.  On quasi-interpolation by radial basis functions with scattered centres , 1995 .

[22]  M. Powell The uniform convergence of thin plate spline interpolation in two dimensions , 1994 .

[23]  I. J. Schoenberg,et al.  Metric spaces and positive definite functions , 1938 .

[24]  J. Duchon Sur l’erreur d’interpolation des fonctions de plusieurs variables par les $D^m$-splines , 1978 .

[25]  R. DeVore,et al.  Compression of wavelet decompositions , 1992 .

[26]  R. DeVore,et al.  Approximation from Shift-Invariant Subspaces of L 2 (ℝ d ) , 1994 .

[27]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[28]  Jeremy Levesley,et al.  Extending the Range of Error Estimates for Radial Approximation in Euclidean Space and on Spheres , 2007, SIAM J. Math. Anal..

[29]  R. DeVore,et al.  Approximation from shift-invariant subspaces of ₂(^{}) , 1994 .

[30]  A. Ron,et al.  Radial Basis Function Approximation: from Gridded Centres to Scattered Centres , 1995 .

[31]  Michael J. Johnson On the Approximation Order of Principal Shift-Invariant Subspaces ofLp(Rd) , 1997 .

[32]  Amos Ron,et al.  The Exponentials in the Span of the Multiinteger Translates of a Compactly Supported Function; Quasiinterpolation and Approximation Order , 1992 .

[33]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.