A note on the reversibility of the elementary cellular automaton with rule number 90

The reversibility properties of the elementary cellular automaton with rule number 90 are studied. It is shown that the cellular automaton considered is not reversible when periodic boundary conditions are considered, whereas when null boundary conditions are stated, the reversibility appears when the number of cells of the cellular space is even. The DETGTRI algorithm is used to prove these statements. Moreover, the explicit expressions of inverse cellular automata of reversible ones are computed.

[1]  Hasan Akin,et al.  Reversibility of 1D Cellular Automata with Periodic Boundary over Finite Fields $\pmb{ {\mathbb{Z}}}_{p}$ , 2011 .

[2]  Pino Caballero-Gil,et al.  Synthesis of cryptographic interleaved sequences by means of linear cellular automata , 2009, Appl. Math. Lett..

[3]  Moawwad E. A. El-Mikkawy On the inverse of a general tridiagonal matrix , 2004, Appl. Math. Comput..

[4]  Ángel Martín del Rey,et al.  Inverse rules of ECA with rule number 150 , 2007, Appl. Math. Comput..

[5]  Jun Jin,et al.  An image encryption based on elementary cellular automata , 2012 .

[6]  Pino Caballero-Gil,et al.  On the Use of Cellular Automata in Symmetric Cryptography , 2010, ArXiv.

[7]  Moawwad E. A. El-Mikkawy,et al.  A fast algorithm for evaluating n th order tri-diagonal determinants , 2004 .

[8]  Jarkko Kari,et al.  Reversible Cellular Automata , 2005, Developments in Language Theory.

[9]  H. C. Williams,et al.  Advances in Cryptology — CRYPTO ’85 Proceedings , 2000, Lecture Notes in Computer Science.

[10]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[11]  Santanu Chattopadhyay,et al.  Additive cellular automata : theory and applications , 1997 .

[12]  Marcin Seredynski,et al.  Block Encryption Using Reversible Cellular Automata , 2004, ACRI.

[13]  Fumitaka Yura,et al.  On reversibility of cellular automata with periodic boundary conditions , 2004 .

[14]  Pino Caballero-Gil,et al.  Chaotic modelling of the generalized self-shrinking generator , 2011, Appl. Soft Comput..

[15]  Palash Sarkar,et al.  A brief history of cellular automata , 2000, CSUR.

[16]  Kenichi Morita,et al.  Reversible Cellular Automata , 2009, Handbook of Natural Computing.

[17]  Steven Guan,et al.  Evolving cellular automata to generate nonlinear sequences with desirable properties , 2007, Appl. Soft Comput..

[18]  Hasan Akin,et al.  Characterization of two-dimensional cellular automata over ternary fields , 2011, J. Frankl. Inst..

[19]  G. Rodríguez Sánchez,et al.  On The Reversibility Of 150 Wolfram Cellular Automata , 2006 .

[20]  J. C. Mora Matrix methods and local properties of reversible one-dimensional cellular automata , 2002 .

[21]  Juan Carlos Seck Tuoh Mora,et al.  Procedures for calculating reversible one-dimensional cellular automata , 2005 .

[22]  Tim Boykett,et al.  Efficient exhaustive listings of reversible one dimensional cellular automata , 2004, Theor. Comput. Sci..

[23]  Parimal Pal Chaudhuri,et al.  Theory and Applications of Cellular Automata in Cryptography , 1994, IEEE Trans. Computers.

[24]  Doreen Schweizer,et al.  Cellular Automata And Complexity Collected Papers , 2016 .

[25]  N. Margolus,et al.  Invertible cellular automata: a review , 1991 .

[26]  Eugen Czeizler On the size of the inverse neighborhoods for one-dimensional reversible cellular automata , 2004, Theor. Comput. Sci..

[27]  Ismail Amr Ismail,et al.  A cryptosystem based on elementary cellular automata , 2013, Commun. Nonlinear Sci. Numer. Simul..

[28]  S. Wolfram Random sequence generation by cellular automata , 1986 .

[29]  Stephen Wolfram Cryptography with Cellular Automata , 1985, CRYPTO.

[30]  Á. M. Rey A Note on the Reversibility Of Elementary Cellular Automaton 150 With Periodic Boundary Conditions , 2014 .