A note on the reversibility of the elementary cellular automaton with rule number 90
暂无分享,去创建一个
[1] Hasan Akin,et al. Reversibility of 1D Cellular Automata with Periodic Boundary over Finite Fields $\pmb{ {\mathbb{Z}}}_{p}$ , 2011 .
[2] Pino Caballero-Gil,et al. Synthesis of cryptographic interleaved sequences by means of linear cellular automata , 2009, Appl. Math. Lett..
[3] Moawwad E. A. El-Mikkawy. On the inverse of a general tridiagonal matrix , 2004, Appl. Math. Comput..
[4] Ángel Martín del Rey,et al. Inverse rules of ECA with rule number 150 , 2007, Appl. Math. Comput..
[5] Jun Jin,et al. An image encryption based on elementary cellular automata , 2012 .
[6] Pino Caballero-Gil,et al. On the Use of Cellular Automata in Symmetric Cryptography , 2010, ArXiv.
[7] Moawwad E. A. El-Mikkawy,et al. A fast algorithm for evaluating n th order tri-diagonal determinants , 2004 .
[8] Jarkko Kari,et al. Reversible Cellular Automata , 2005, Developments in Language Theory.
[9] H. C. Williams,et al. Advances in Cryptology — CRYPTO ’85 Proceedings , 2000, Lecture Notes in Computer Science.
[10] Stephen Wolfram,et al. A New Kind of Science , 2003, Artificial Life.
[11] Santanu Chattopadhyay,et al. Additive cellular automata : theory and applications , 1997 .
[12] Marcin Seredynski,et al. Block Encryption Using Reversible Cellular Automata , 2004, ACRI.
[13] Fumitaka Yura,et al. On reversibility of cellular automata with periodic boundary conditions , 2004 .
[14] Pino Caballero-Gil,et al. Chaotic modelling of the generalized self-shrinking generator , 2011, Appl. Soft Comput..
[15] Palash Sarkar,et al. A brief history of cellular automata , 2000, CSUR.
[16] Kenichi Morita,et al. Reversible Cellular Automata , 2009, Handbook of Natural Computing.
[17] Steven Guan,et al. Evolving cellular automata to generate nonlinear sequences with desirable properties , 2007, Appl. Soft Comput..
[18] Hasan Akin,et al. Characterization of two-dimensional cellular automata over ternary fields , 2011, J. Frankl. Inst..
[19] G. Rodríguez Sánchez,et al. On The Reversibility Of 150 Wolfram Cellular Automata , 2006 .
[20] J. C. Mora. Matrix methods and local properties of reversible one-dimensional cellular automata , 2002 .
[21] Juan Carlos Seck Tuoh Mora,et al. Procedures for calculating reversible one-dimensional cellular automata , 2005 .
[22] Tim Boykett,et al. Efficient exhaustive listings of reversible one dimensional cellular automata , 2004, Theor. Comput. Sci..
[23] Parimal Pal Chaudhuri,et al. Theory and Applications of Cellular Automata in Cryptography , 1994, IEEE Trans. Computers.
[24] Doreen Schweizer,et al. Cellular Automata And Complexity Collected Papers , 2016 .
[25] N. Margolus,et al. Invertible cellular automata: a review , 1991 .
[26] Eugen Czeizler. On the size of the inverse neighborhoods for one-dimensional reversible cellular automata , 2004, Theor. Comput. Sci..
[27] Ismail Amr Ismail,et al. A cryptosystem based on elementary cellular automata , 2013, Commun. Nonlinear Sci. Numer. Simul..
[28] S. Wolfram. Random sequence generation by cellular automata , 1986 .
[29] Stephen Wolfram. Cryptography with Cellular Automata , 1985, CRYPTO.
[30] Á. M. Rey. A Note on the Reversibility Of Elementary Cellular Automaton 150 With Periodic Boundary Conditions , 2014 .