Mechanical response of solid clay brickwork under eccentric loading. Part I: Unreinforced masonry

The compressive strength of eccentrically loaded masonry, affecting the strength of arches, vaults, pillars and out-of-plane loaded masonry panels, is addressed in this paper both from the experimental and numerical point of view. The aim is that of relating the eccentric compressive strength to the concentric value, to the mechanical characteristics of the constituents,i.e. mortar and bricks, and to the brickwork bond. In the paper, displacement controlled compression tests on solid clay brick and cement-lime mortar masonry prisms, under concentric and moderate-to-highly eccentric loading, are presented and discussed. The experimental outcomes and the results of FEM models give a preliminary insight in the mechanical response of masonry up to collapse. It is found that edge effects may affect the load carrying capacity of the brickwork, while detailed measurements on the mortar joints show that the plane section assumption, typical of many design procedures, is reasonably verified up to the limit load, giving was to simplified but reliable design procedures.RésuméLa résistance à compression dans les murs chargé excentriquement, typique des arches, des voûtes, des piliers et des panneaux de murs charges hors de leurs propres étages est prise en considération dans ce travail d'un point de vue expérimental et numérique. Le but est de trouver une relation entre la résistance à compression excentrique et celle centrée et les caractéristiques mécaniques des composants, par exemple mortier et briques avec la texture de la maçonnerie. Dans l'étude, on présente et on discute les preuves de compression en contrôlant la compression sur les prismes des briques pleines et mortier de chaux et ciment. Les résultats expérimentaux et ceux des modèles FEM fournissent quelques informations sur les réponses mécaniques des murs jusqu'à leur effondrement. On s'est rendu compte que les effets de bord peuvent influencer la capacité de résistance de la maçonnerie alors que des mesures détaillées sur les joints de mortier démontrent que les hypothèses de conservation des sections plates, selon différentes façons de calculer, sont vérifiées raisonnablement jusqu'à la limite de la charge, ouvrant la route à des façons de calculer plus simples mais fiables.

[1]  J. Mier Fracture Processes of Concrete , 1997 .

[2]  C. E. Bakis,et al.  Strain Transfer Analysis of Masonry Prisms Reinforced with Bonded Carbon Fiber Reinforced Polymer Sheets , 2001 .

[3]  Paul Mlakar,et al.  Out-of-plane behavior of surface-reinforced masonry walls , 2002 .

[4]  T. Triantafillou Strengthening of Masonry Structures Using Epoxy-Bonded FRP Laminates , 1998 .

[5]  C Abdunur,et al.  STRENGTHENING MASONRY ARCH BRIDGES THROUGH BACKFILL REPLACEMENT BY CONCRETE , 1998 .

[6]  R. H. Atkinson,et al.  Deformation Failure Theory For Stack-Bond Brick Masonry Prisms In Compression , 1985 .

[7]  David W. Scott,et al.  OUT-OF-PLANE STRENGTHENING OF MASONRY WALLS WITH REINFORCED COMPOSITES , 2001 .

[8]  S K Sumon,et al.  REPAIR AND STRENGTHENING OF MASONRY ARCH BRIDGES , 1995 .

[9]  N Taylor,et al.  THE BRITTLE HINGE IN MASONRY ARCH MECHANISMS , 1993 .

[10]  M. Hatzinikolas,et al.  Failure Modes for Eccentrically Loaded Concrete BlockMasonry Walls , 1980 .

[11]  Matthew Gilbert,et al.  RING: 2D rigid-block analysis program for masonry arch bridges , 2001 .

[12]  M A Crisfield,et al.  A MECHANISM PROGRAM FOR COMPUTING THE STRENGTH OF MASONRY ARCH BRIDGES BY M.A. CRISFIELD AND A.J. PACKHAM , 1987 .

[13]  R. Luciano,et al.  Damage of masonry panels reinforced by FRP sheets , 1998 .

[14]  Roero Clara Silvia N. 54 Carlo Alberto Castigliano, Théorie de l'équilibre des systèmes élastiques et ses applications, 1879 , 2001 .

[15]  Luigi Gambarotta,et al.  Isotropic damage model with different tensile–compressive response for brittle materials , 2001 .

[16]  C. Modena,et al.  Behavior of Brick Masonry Vaults Strengthened by FRP Laminates , 2001 .

[17]  T G Hughes ANALYSIS AND ASSESSMENT OF TWIN-SPAN MASONRY ARCH BRIDGES. , 1995 .

[18]  A. Brencich,et al.  Mechanical response of solid clay brickwork under eccentric loading. Part II: CFRP reinforced masonry , 2005 .

[19]  Robert G. Drysdale,et al.  Capacity of Concrete Block Masonary Prisms under Eccentric Compressive Loading , 1983 .

[20]  S. Pietruszczak,et al.  A mathematical description of macroscopic behaviour of brick masonry , 1992 .

[21]  Luigi Biolzi EVALUATION OF COMPRESSIVE STRENGTH OF MASONRY WALLS BY LIMIT ANALYSIS , 1988 .

[22]  Sergio Lagomarsino,et al.  DAMAGE MODELS FOR THE SEISMIC RESPONSE OF BRICK MASONRY SHEAR WALLS. PART II: THE CONTINUUM MODEL AND ITS APPLICATIONS , 1997 .

[23]  Jacques Heyman,et al.  The masonry arch , 1982 .

[24]  M A Crisfield,et al.  FINITE ELEMENT AND MECHANISM METHODS FOR THE ANALYSIS OF MASONRY AND BRICKWORK ARCHES , 1985 .

[25]  C. W. Dolan,et al.  Out-of-plane bending of FRP-reinforced masonry walls , 1998 .

[26]  Modeling of reinforced masonry elements , 2001 .

[27]  H R Hamilton,et al.  FLEXURAL CAPACITY OF GLASS FRP STRENGTHENED CONCRETE MASONRY WALLS , 2001 .

[28]  Robert G. Drysdale,et al.  Masonry Structures: Behavior and Design , 1993 .