Calculation of normal mode spectra in laterally heterogeneous earth models using an iterative direct solution method

SUMMARY Normal mode observations play an important role in studying broad-scale lateral variations in the Earth. Such studies require the calculation of accurate synthetic spectra in realistic earth models, and this remains a computationally challenging problem. Here, we describe a new implementation of the direct solution method for calculating normal mode spectra in laterally heterogeneous earth models. In this iterative direct solution method, the modecoupling equations are solved in the frequency-domain using the preconditioned biconjugate gradientalgorithm,andthetime-domainsolutionisrecoveredusinganumericalinverseFourier transform. A number of example calculations are presented to demonstrate the accuracy and efficiency of the method for performing large ‘full coupling’ calculations as compared to methods based on matrix diagonalization and the traditional direct solution method.

[1]  J. Woodhouse The coupling and attenuation of nearly resonant multiplets in the Earth's free oscillation spectrum , 1980 .

[2]  Jeroen Tromp,et al.  Normal-mode constraints on the structure of the Earth , 1996 .

[3]  John H. Woodhouse,et al.  Theoretical free-oscillation spectra: the importance of wide band coupling , 2001 .

[4]  P. Lognonné Normal modes and seismograms in an anelastic rotating Earth , 1991 .

[5]  A. Dziewoński,et al.  Seismic Surface Waves and Free Oscillations in a Regionalized Earth Model , 1982 .

[6]  J. Tromp,et al.  Theoretical Global Seismology , 1998 .

[7]  F. G. Friedlander Introduction to the theory of distributions , 1982 .

[8]  D. Giardini,et al.  Three-dimensional structure of the Earth from splitting in free-oscillation spectra , 1987, Nature.

[9]  A. Deuss Normal mode constraints on shear and compressional wave velocity of the Earth's inner core , 2007 .

[10]  Gene H. Golub,et al.  Matrix computations , 1983 .

[11]  J. Woodhouse,et al.  Investigation of time dependent inner core structure by the analysis of free oscillation spectra , 1998 .

[12]  Jennifer Andrews,et al.  Wide-band coupling of Earth's normal modes due to anisotropic inner core structure , 2008 .

[13]  J. Woodhouse,et al.  Normal mode coupling due to hemispherical anisotropic structure in Earth's inner core , 2009 .

[14]  F. Dahlen The Normal Modes of a Rotating, Elliptical Earth—II Near-Resonance Multiplet Coupling , 1969 .

[15]  F. Dahlen The Normal Modes of a Rotating, Elliptical Earth , 1968 .

[16]  John H. Woodhouse,et al.  Mapping the upper mantle: Three‐dimensional modeling of earth structure by inversion of seismic waveforms , 1984 .

[17]  Joseph S. Resovsky,et al.  New and refined constraints on three‐dimensional Earth structure from normal modes below 3 mHz , 1998 .

[18]  Domenico Giardini,et al.  Evidence for inner core anisotropy from free oscillations , 1986 .

[19]  J. Woodhouse,et al.  Regional Variation of Inner Core Anisotropy from Seismic Normal Mode Observations , 2010, Science.

[20]  A. Deuss,et al.  Splitting function measurements for Earth's longest period normal modes using recent large earthquakes , 2011 .

[21]  Joseph S. Resovsky,et al.  Probabilistic Tomography Maps Chemical Heterogeneities Throughout the Lower Mantle , 2004, Science.

[22]  Jeffrey Park,et al.  Normal mode multiplet coupling along a dispersion branch , 1991 .

[23]  J. Tromp,et al.  Free oscillations of a spherical anelastic earth , 1990 .

[24]  Inversion for laterally heterogeneous earth structure using a laterally heterogeneous starting model: preliminary results , 2007 .

[25]  J. Woodhouse,et al.  Complex Shear Wave Velocity Structure Imaged Beneath Africa and Iceland. , 1999, Science.

[26]  J. Tromp,et al.  Normal-mode and free-Air gravity constraints on lateral variations in velocity and density of Earth's mantle , 1999, Science.

[27]  B. Romanowicz Multiplet-multiplet coupling due to lateral heterogeneity: asymptotic effects on the amplitude and frequency of the Earth's normal modes , 1987 .

[28]  Joseph S. Resovsky,et al.  Constraining odd‐degree earth structure with coupled free‐oscillations , 1995 .

[29]  E. Mochizuki The Free Oscillations of an Anisotropic and Heterogeneous Earth , 1986 .

[30]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .

[31]  D. Giardini,et al.  Large‐scale three‐dimensional even‐degree structure of the Earth from splitting of long‐period normal modes , 1991 .

[32]  S. Karato,et al.  Importance of anelasticity in the interpretation of seismic tomography , 1993 .

[33]  Jeffrey Park Synthetic seismograms from coupled free oscillations: Effects of lateral structure and rotation , 1986 .

[34]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[35]  John H. Woodhouse,et al.  Iteration method to determine the eigenvalues and eigenvectors of a target multiplet including full mode coupling , 2004 .

[36]  F. A. Dahlen,et al.  The Effect of A General Aspherical Perturbation on the Free Oscillations of the Earth , 1978 .

[37]  R. Geller,et al.  Inversion for laterally heterogeneous upper mantle S-wave velocity structure using iterative waveform inversion , 1993 .

[38]  Jeffrey Park,et al.  The subspace projection method for constructing coupled-mode synthetic seismograms , 1990 .

[39]  B. Romanowicz Can we resolve 3D density heterogeneity in the lower mantle? , 2001 .

[40]  A solution of the elastodynamic equation in an anelastic earth model , 2007 .

[41]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[42]  B. Valette,et al.  Influence of liquid core dynamics on rotational modes , 2009 .

[43]  J. Wahr A normal mode expansion for the forced response of a rotating earth , 1981 .

[44]  Emmanuel Chaljub,et al.  Spectral element modelling of three-dimensional wave propagation in a self-gravitating Earth with an arbitrarily stratified outer core , 2003, physics/0308102.

[45]  J. Tromp,et al.  Even‐degree lateral variations in the Earth's mantle constrained by free oscillations and the free‐air gravity anomaly , 2001 .

[46]  Joseph S. Resovsky,et al.  A degree 8 mantle shear velocity model from normal mode observations below 3 mHz , 1999 .

[47]  C. Kuo,et al.  On the resolution of density anomalies in the Earth's mantle using spectral fitting of normal‐mode data , 2002 .

[48]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation: II. Three-dimensional models, oceans, rotation and self-gravitation , 2002 .

[49]  K. Chen,et al.  Matrix preconditioning techniques and applications , 2005 .

[50]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[51]  B. Romanowicz,et al.  Modelling of coupled normal modes of the Earth: the spectral method , 1990 .