The Phase Transition in Multitype Binomial Random Graphs

We determine the asymptotic size of the largest component in the $2$-type binomial random graph $G(\mathbf{n},P)$ near criticality using a refined branching process approach. In $G(\mathbf{n},P)$ every vertex has one of two types, the vector $\mathbf{n}$ describes the number of vertices of each type, and any edge $\{u,v\}$ is present independently with a probability that is given by an entry of the probability matrix $P$ according to the types of $u$ and $v.$ We prove that in the weakly supercritical regime, i.e., if the “distance” to the critical point of the phase transition is given by $\varepsilon=\varepsilon(\mathbf{n})\to0,$ with probability $1-o(1),$ the largest component in $G(\mathbf{n},P)$ contains asymptotically $2\varepsilon \|\mathbf{n}\|_1$ vertices and all other components are of size $o(\varepsilon \|\mathbf{n}\|_1).$

[1]  Rick Durrett,et al.  Rigorous Result for the CHKNS Random Graph Model , 2003, DRW.

[2]  Béla Bollobás,et al.  A Simple Branching Process Approach to the Phase Transition in Gn, p , 2012, Electron. J. Comb..

[3]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[4]  Tobias Müller,et al.  A geometric Achlioptas process , 2015 .

[5]  Nicolas Broutin,et al.  Scaling limits of random graph models at criticality: Universality and the basin of attraction of the Erdős-Rényi random graph , 2014, 1411.3417.

[6]  S. Strogatz Exploring complex networks , 2001, Nature.

[7]  Béla Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007, Random Struct. Algorithms.

[8]  Mikko Alava,et al.  Branching Processes , 2009, Encyclopedia of Complexity and Systems Science.

[9]  Béla Bollobás,et al.  Asymptotic normality of the size of the giant component in a random hypergraph , 2011, Random Struct. Algorithms.

[10]  Amin Coja-Oghlan,et al.  The order of the giant component of random hypergraphs , 2007, Random Struct. Algorithms.

[11]  Mohammad Mahdian,et al.  Stochastic kronecker graphs , 2011, Random Struct. Algorithms.

[13]  Benny Sudakov,et al.  The phase transition in random graphs: A simple proof , 2012, Random Struct. Algorithms.

[14]  Fan Chung Graham,et al.  The Volume of the Giant Component of a Random Graph with Given Expected Degrees , 2006, SIAM J. Discret. Math..

[15]  Tomasz Luczak,et al.  Component Behavior Near the Critical Point of the Random Graph Process , 1990, Random Struct. Algorithms.

[16]  Remco van der Hofstad,et al.  Critical behavior in inhomogeneous random graphs , 2009, Random Struct. Algorithms.

[17]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[18]  Ilkka Norros,et al.  On a conditionally Poissonian graph process , 2006, Advances in Applied Probability.

[19]  Tomasz Łuczak,et al.  The phase transition in a random hypergraph , 2002 .

[20]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[21]  Joel H. Spencer,et al.  Birth control for giants , 2007, Comb..

[22]  M. Newman Random Graphs as Models of Networks , 2002, cond-mat/0202208.

[23]  B. Söderberg General formalism for inhomogeneous random graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Joel H. Spencer,et al.  Synchrony and asynchrony in neural networks , 2010, SODA '10.

[25]  Matthew Cook,et al.  Unsupervised Learning of Relations , 2010, ICANN.

[26]  F. Chung,et al.  Connected Components in Random Graphs with Given Expected Degree Sequences , 2002 .

[27]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[28]  A. Martin-Löf,et al.  Generating Simple Random Graphs with Prescribed Degree Distribution , 2006, 1509.06985.

[29]  Asaf Nachmias,et al.  The critical random graph, with martingales , 2005 .

[30]  Béla Bollobás,et al.  The phase transition in the uniformly grown random graph has infinite order , 2005, Random Struct. Algorithms.

[31]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.