The 2021 IAEA software intercomparison for k0-INAA

[1]  M. Di Luzio,et al.  The k0-INRIM software version 2.0: presentation and an analysis vademecum , 2022, Journal of Radioanalytical and Nuclear Chemistry.

[2]  M. Di Luzio,et al.  A method to deal with correlations affecting γ counting efficiencies in analytical chemistry measurements performed by k0-NAA , 2020, Measurement Science and Technology.

[3]  N. Barradas,et al.  International Atomic Energy Agency inter-comparison of particle induced gamma-ray emission codes for bulk samples , 2020 .

[4]  Giancarlo D’Agostino,et al.  The k0-INRIM software: a tool to compile uncertainty budgets in neutron activation analysis based on k0-standardisation , 2019, Measurement Science and Technology.

[5]  M. Oddone,et al.  An uncertainty spreadsheet for the k0-standardisation method in Neutron Activation Analysis , 2018, Journal of Radioanalytical and Nuclear Chemistry.

[6]  P. Vermaercke,et al.  The 2012 recommended k0 database , 2014, Journal of Radioanalytical and Nuclear Chemistry.

[7]  R. A. Forster,et al.  Initial MCNP6 Release Overview - MCNP6 version 1.0 , 2013 .

[8]  John S. Hendricks,et al.  Initial MCNP6 Release Overview , 2012 .

[9]  J. Kučera,et al.  Comparison of Kayzero for Windows and k0-IAEA software packages for k0 standardization in neutron activation analysis , 2011 .

[10]  N. P. Barradas,et al.  International Atomic Energy Agency intercomparison of ion beam analysis software , 2007 .

[11]  Menno Blaauw,et al.  The k0-IAEA program , 2007 .

[12]  M. Rossbach,et al.  Progress in the k0-IAEA program , 2006 .

[13]  Milko Jakšić,et al.  The 2000 IAEA intercomparison of PIXE spectrum analysis software , 2002 .

[14]  F De Corte,et al.  Installation and calibration of Kayzero-assisted NAA in three Central European countries via a Copernicus project. , 2001, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[15]  G. Arana,et al.  Uncertainty Budget for k0-NAA , 2000 .

[16]  S. Fazinić,et al.  The 1997 IAEA intercomparison of commercially available PC-based software for alpha-particle spectrometry , 1999 .

[17]  S. Fazinić,et al.  The 1997 IAEA test spectra for alpha-particle spectrometry , 1999 .

[18]  R. van Sluijs,et al.  Optimized data evaluation fork0-based NAA , 1999 .

[19]  R. Sluijs,et al.  The influence of sample properties and sample geometry on the accuracy of gamma-ray spectrometric analyses , 1998 .

[20]  P. Vukotic,et al.  ANGLE: A PC-code for semiconductor detector efficiency calculations , 1997 .

[21]  W. Westmeier,et al.  IAEA γ-ray spectra for testing of spectrum analysis software , 1997 .

[22]  R. Sluijs,et al.  Commercialk0-based neutron activation analysis at DSM Research (the Netherlands) , 1994 .

[23]  A. L. Prindle,et al.  Nonconventional methods for accurately calibrating germanium detectors , 1992 .

[24]  P. Parekh,et al.  Coincidence summing in gamma-ray spectroscopy , 1990 .

[25]  조준학,et al.  Growth of human bronchial epithelial cells at an air-liquid interface alters the response to particle exposure , 2013, Particle and Fibre Toxicology.

[26]  F. Corte,et al.  Calculation of the absolute peak efficiency of gamma-ray detectors for different counting geometries , 1981 .

[27]  V. P. Kolotov,et al.  The 2002 IAEA intercomparison of software for low-level γ-ray spectrometry * , 2005 .

[28]  V. P. Kolotov,et al.  The 2002 IAEA test spectra for low-level γ-ray spectrometry software , 2005 .

[29]  S. Sudár 'TrueCoinc' software utility for calculation of the true coincidence correction , 2002 .

[30]  F. De Corte,et al.  Single-comparator methods in reactor neutron activation analysis , 1975 .